已知等差數(shù)列{an},公差d>0,a1+a2+a3=6,且a3-a1,2a2,a8成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
an
2n
,求證:b1+b2+b3+…+bn<2.
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由已知條件利用等差數(shù)列的通項(xiàng)公式和等比數(shù)列的性質(zhì)求出等差數(shù)列的首項(xiàng)和公差,由此能求出{an}的通項(xiàng)公式.
(Ⅱ)由bn=
an
2n
=
n
2n
,利用錯(cuò)位相減法能證明b1+b2+b3+…+bn<2.
解答: (Ⅰ)解:∵等差數(shù)列{an},公差d>0,a1+a2+a3=6,且a3-a1,2a2,a8成等比數(shù)列,
3a2=6
(2a2)2=2d(a2+6d)
d>0

解得a1=1,d=1,
∴an=1+(n-1)×1=n.
(Ⅱ)證明:∵bn=
an
2n
=
n
2n

∴令Sn=b1+b2+b3+…+bn=
1
2
+
2
22
+
3
23
+…+
n
2n
,①
1
2
Sn
=
1
22
+
2
23
+
3
24
+…+
n
2n+1
,②
①-②,得:
1
2
Sn
=
1
2
+
1
22
+
1
23
+…+
1
2n
-
n
2n+1

=
1
2
(1-
1
2n
)
1-
1
2
-
n
2n+1

=1-
1
2n
-
n
2n+1
,
∴Sn=2-
n+2
2n
<2.故b1+b2+b3+…+bn<2.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查不等式的證明,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(x+1)=f(-x-3),且f(-2)>f(2),解不等式:f(-2x2+2x-3)>f(x2+4x+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=2x2-lnx的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一只受傷的丹頂鶴在如圖所示(直角梯形)的草原上飛過,其中AD=
2
,DC=2,BC=1,它可能隨機(jī)在草原上任何一處(點(diǎn)),若落在扇形沼澤區(qū)域ADE以外丹頂鶴能生還,則該丹頂鶴生還的概率是( 。
A、1-
π
10
B、
1
2
-
π
15
C、1-
π
6
D、1-
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,已知點(diǎn)(an,an+1)(n∈N*)在函數(shù)y=3x的圖象上,且S3=26.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)在an與an+1之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)組成公差為dn的等差數(shù)列,求數(shù)列{
1
dn
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(
π
4
-α)=
3
5
,sin(
4
+β)=-
12
13
,α∈(
π
4
,
4
),β∈(0,
π
4
),求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)字0,1,2,3,4,5,6組成沒有重復(fù)數(shù)字的四位數(shù),其中個(gè)位、十位和百位上的數(shù)字之和為偶數(shù)的四位數(shù)共有( 。﹤(gè).
A、324B、216
C、180D、384

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(2x+
π
3
)的圖象可由函數(shù)y=sinx的圖象怎樣變換而來?(  )
A、先向左平移
π
3
,再縱坐標(biāo)不變,橫坐標(biāo)伸長為原來的2倍
B、先向左平移
π
3
,再縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的
1
2
C、先向右平移
π
6
,再縱坐標(biāo)不變,橫坐標(biāo)伸長為原來的2倍
D、先向左平移
π
6
,再縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知tanA-tanC-
3
tanAtanC=
3
,且
2
a=
2
c+b,
(1)求A-C大;
(2)求∠C的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案