5.某工廠新研發(fā)的一種產(chǎn)品的成本價(jià)是4元/件,為了對(duì)該產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下6組數(shù)據(jù):
單價(jià)x(元)88.28.48.68.89
銷量y(件)908483807568
(Ⅰ)若90≤x+y<100,就說(shuō)產(chǎn)品“定價(jià)合理”,現(xiàn)從這6組數(shù)據(jù)中任意抽取2組數(shù)據(jù),2組數(shù)據(jù)中“定價(jià)合理”的個(gè)數(shù)記為X,求X的數(shù)學(xué)期望;
(Ⅱ)求y關(guān)于x的線性回歸方程,并用回歸方程預(yù)測(cè)在今后的銷售中,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)L=銷售收入-成本)
附:線性回歸方程$\hat y=\hat bx+\hat a$中系數(shù)計(jì)算公式:$\hat b=\frac{{\sum_{i=1}^n{(\;{x_i}-\overline x\;)(\;{y_i}-\overline y\;)}}}{{\sum_{i=1}^n{{{(\;{x_i}-\overline x\;)}^2}}}}$,$\hat a=\overline y-\hat b\;\overline x$,其中$\overline x$、$\overline y$表示樣本均值.

分析 (Ⅰ)根據(jù)題意,得出X的可能取值,計(jì)算對(duì)應(yīng)的概率值,寫(xiě)出X的分布列與數(shù)學(xué)期望EX;
(Ⅱ)計(jì)算$\overline{x}$、$\overline{y}$,求出$\stackrel{∧}$、$\stackrel{∧}{a}$,寫(xiě)出y關(guān)于x的線性回歸方程,得出利潤(rùn)函數(shù)L(x)的解析式,利用二次函數(shù)的性質(zhì)求出L(x)的最大值與對(duì)應(yīng)x的值.

解答 解:(Ⅰ)X的可能取值為0,1,2;滿足90≤x+y<100的有3組,
所以P(X=0)=$\frac{{C}_{3}^{2}}{{C}_{6}^{2}}$=$\frac{1}{5}$,
P(X=1)=$\frac{{C}_{3}^{1}{•C}_{3}^{1}}{{C}_{6}^{2}}$=$\frac{3}{5}$,
P(X=2)=$\frac{{C}_{3}^{2}}{{C}_{6}^{2}}$=$\frac{1}{5}$;
X的分布列為

X012
P$\frac{1}{5}$$\frac{3}{5}$$\frac{1}{5}$
數(shù)學(xué)期望為EX=0×$\frac{1}{5}$+1×$\frac{3}{5}$+2×$\frac{1}{5}$=1;…(6分)
(Ⅱ)因?yàn)?\overline{x}$=8.5,$\overline{y}$=80,$\sum_{i=1}^{6}$${{(x}_{i}-\overline{x})}^{2}$=0.7,$\sum_{i=1}^{6}$(xi-$\overline{x}$)(yi-$\overline{y}$)=-14;
所以$\stackrel{∧}$=$\frac{-14}{0.7}$=-20,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$=250;
y關(guān)于x的線性回歸方程是$\stackrel{∧}{y}$=-20x+250,
利潤(rùn)函數(shù)L(x)=x(-20x+250)-4(-20x+250)=-20x2+330x-1000;
當(dāng)x=-$\frac{330}{2×(-20)}$=8.25時(shí),L(x)取得最大值361.25;
故當(dāng)單價(jià)定為8.25元時(shí),工廠可獲得最大利潤(rùn).…(12分)

點(diǎn)評(píng) 本題考查了離散型隨機(jī)變量的分布列與期望的計(jì)算問(wèn)題,也考查了線性回歸方程的求法以及二次函數(shù)的最值問(wèn)題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知$2+\frac{2}{3}={2^2}×\frac{2}{3}\;,\;3+\frac{3}{8}={3^2}×\frac{3}{8}\;,\;4+\frac{4}{15}={4^2}×\frac{4}{15}\;,\;…$,若9+$\frac{a}$=92+$\frac{a}$(a,b為正整數(shù))則a+b=89.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,DA的中點(diǎn),且AC=BC.求證:四邊形EFGH是菱形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.復(fù)數(shù)$\frac{3-i}{i}$=( 。
A.1+3iB.-1-3iC.-1+3iD.1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合P={x|1<x≤2},Q={x|x2-2x≥0},若U=R,則P∪∁UQ=( 。
A.[0,2]B.(0,2]C.(1,2]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.《幸福賬單》是一檔集情感故事、才藝秀、大型游戲、現(xiàn)場(chǎng)互動(dòng)等多類元素的綜藝大型互動(dòng)游戲類節(jié)目.以普通人講述手中賬單背后的故事,并參與因此而量身為其定制的大型游戲,來(lái)贏得賬單報(bào)銷的形式,講述了人與人之間的真情,展現(xiàn)了當(dāng)今百姓生活中的萬(wàn)般幸福之態(tài).某機(jī)構(gòu)隨機(jī)抽取100個(gè)參與節(jié)目的報(bào)賬人的賬單總額作為樣本進(jìn)行分析研究,由此得到如下頻數(shù)分布表:
報(bào)賬人的賬單總額(元)[0,1000)[1000,2000)[2000,3000)[3000,4000)[4000,5000)[5000,6000)
 頻數(shù) 2412 32 10 14 8
(Ⅰ)在如表中作出這些數(shù)據(jù)的頻率分布直方圖:
(Ⅱ)若將頻率視為概率,從參與節(jié)目的報(bào)賬人中隨機(jī)抽取3位(看作有放回的抽樣),求賬單總額在[3000,4000)內(nèi)的報(bào)賬人數(shù)X的分布列、數(shù)學(xué)期望、與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某工廠一年中各月份的收入、支出情況的統(tǒng)計(jì)如圖所示,下列說(shuō)法中錯(cuò)誤的是(  )

(注:結(jié)余=收入-支出)
A.收入最高值與收入最低值的比是3:1
B.結(jié)余最高的月份是7月
C.1至2月份的收入的變化率與4至5月份的收入的變化率相同
D.前6個(gè)月的平均收入為40萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在等比數(shù)列{an}中,${a_1}+{a_2}=\frac{1}{2},{a_5}+{a_6}=8,{a_n}>0$,則a3+a4=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,在長(zhǎng)方形OABC內(nèi)任取一點(diǎn)P(x,y),則點(diǎn)P落在陰影部分內(nèi)的概率為$\frac{2e-3}{2e}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案