已知兩條異面直線a,b的夾角為60°,
a
b
分別為直線a,b的方向向量,則<
a
,
b
>=
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應用,空間角
分析:根據(jù)異面直線所成角的定義,結合平面向量所成角的定義求出<
a
,
b
>的角.
解答: 解:∵兩條異面直線a,b的夾角為60°,
a
,
b
分別為直線a,b的方向向量,
根據(jù)異面直線所成角的定義,
a
,
b
所成的角是銳角時,
a
,
b
>=60°,
a
,
b
所成的角是鈍角時,
a
b
>=120°;
∴<
a
b
>=60°或120°.
故答案為:60°或120°.
點評:本題考查了直線的方向向量與異面直線的夾角的應用問題,解題時應注意直線夾角與向量夾角的區(qū)別與聯(lián)系,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=b-
a
1+2x
(x∈[-a,2a-1])是奇函數(shù),則a+b的值為( 。
A、
3
2
B、
5
2
C、2
D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
x2,x≥0
2x,x<0
,則
1
-1
f(x)dx的值為( 。
A、
1
-1
x2dx
B、
1
-1
2xdx
C、
0
-1
x2dx+
1
0
2xdx
D、
0
-1
2xdx+
1
0
x2dx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

e1
,
e2
為一組基底,
OA
=-2
e1
-2
e2
,
OB
=m
e2
OC
=n
e1
,如果A、B、C三點共線,則
1
m
-
1
n
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg
1-x
1+x

(1)求f(x)的定義域,
(2)證明f(x)的定義域內(nèi)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,△ABC中,O是BC的中點,AB=AC,AO=2OC=2.將△BAO沿AO折起,使B點與圖中B'點重合.
(Ⅰ)求證:AO⊥平面B′OC;
(Ⅱ)當三棱錐B'-AOC的體積取最大時,求二面角A-B′C-O的余弦值;
(Ⅲ)在(Ⅱ)的條件下,試問在線段B′A上是否存在一點P,使CP與平面B′OA所成的角的正弦值為
2
3
?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(3x-2)=x-1(x∈[0,2]),將函數(shù)y=f(x)的圖象向右平移2個單位,再向上平移3個單位可得函數(shù)y=g(x)的圖象.
(1)求函數(shù)y=f(x)與y=g(x)的解析式;
(2)設h(x)=[g(x)]2+g(x2),試求函數(shù)y=h(x)的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<
π
2
)的周期為π,且圖象上有一個最低點為M(
3
,-3).
(1)求f(x)的解析式;
(2)求使f(x)<
3
2
成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,上頂點為A,在x軸負半軸上有一點B,滿足
BF1
=
F1F2
,且AB⊥AF2
(Ⅰ)求橢圓C的離心率;
(Ⅱ)D是過A、B、F2三點的圓上的點,D到直線l:x-
3
y-3=0的最大距離等于橢圓長軸的長,求橢圓C的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,線段MN的中垂線與x軸相交于點P(m,0),求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案