【題目】為調(diào)查了解某省屬師范大學(xué)師范類(lèi)畢業(yè)生參加工作后,從事的工作與教育是否有關(guān)的情況,該校隨機(jī)調(diào)查了該校80位性別不同的2016年師范類(lèi)畢業(yè)大學(xué)生,得到具體數(shù)據(jù)如下表:
與教育有關(guān) | 與教育無(wú)關(guān) | 合計(jì) | |
男 | 30 | 10 | 40 |
女 | 35 | 5 | 40 |
合計(jì) | 65 | 15 | 80 |
(1)能否在犯錯(cuò)誤的概率不超過(guò)5%的前提下,認(rèn)為“師范類(lèi)畢業(yè)生從事與教育有關(guān)的工作與性別有關(guān)”?
參考公式:().
附表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.023 | 6.635 |
(2)求這80位師范類(lèi)畢業(yè)生從事與教育有關(guān)工作的頻率;
(3)以(2)中的頻率作為概率.該校近幾年畢業(yè)的2000名師范類(lèi)大學(xué)生中隨機(jī)選取4名,記這4名畢業(yè)生從事與教育有關(guān)的人數(shù)為,求的數(shù)學(xué)期望.
【答案】(1)見(jiàn)解析;(2);(3)見(jiàn)解析.
【解析】試題分析:(1)計(jì)算觀測(cè)值,即可得出結(jié)論;
(2)由圖表中的數(shù)據(jù)計(jì)算這80位師范類(lèi)畢業(yè)生從事與教育有關(guān)工作的頻率;
(3)由題意知X服從B(4, ), 計(jì)算均值E(X)即可.
試題解析:(1)根據(jù)列聯(lián)表計(jì)算觀測(cè)值
,
因?yàn)?/span>K2<3.841,
所以在犯錯(cuò)誤的概率不超過(guò)5%的前提下,
不能認(rèn)為“師范類(lèi)畢業(yè)生從事與教育有關(guān)的工作與性別有關(guān)”;
(2)由圖表知這80位師范類(lèi)畢業(yè)生從事與教育有關(guān)工作的頻率為
;
(3)由題意知X服從B(4, ),
則E(X)=np=4×.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車(chē)間生產(chǎn)某種產(chǎn)品,固定成本是萬(wàn)元,每生產(chǎn)件產(chǎn)品成本增加元,根據(jù)經(jīng)驗(yàn),當(dāng)年產(chǎn)量少于400件時(shí),總收益(成本與總利潤(rùn)的和,單位:元)是年產(chǎn)量(單位:件)的二次函數(shù);,當(dāng)年產(chǎn)量不少于件時(shí),R是Q的一次函數(shù),以下是Q與R的部分?jǐn)?shù)據(jù):
Q/ 件 | 50 | 200 | 350 | 500 | 650 |
R/ 元 | 23750 | 80000 | 113750 | 125000 | 1332500 |
問(wèn):每年生產(chǎn)多少件產(chǎn)品時(shí),總利潤(rùn)最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),若以直角坐標(biāo)系中的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(為實(shí)數(shù).)
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線與曲線有公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓的極坐標(biāo)方程為: .若以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立平面直角坐標(biāo)系.
(Ⅰ)求圓的直角坐標(biāo)方程及其參數(shù)方程;
(Ⅱ)在直角坐標(biāo)系中,點(diǎn)是圓上動(dòng)點(diǎn),求的最大值,并求出此時(shí)
點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a∈R,函數(shù)f(x)= +alnx﹣3x,g(x)=﹣x2+8x,且x=1是函數(shù)f(x)的極大值點(diǎn).
(1)求a的值.
(2)如果函數(shù)y=f(x)和函數(shù)y=g(x)在區(qū)間(b,b+1)上均為增函數(shù),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種大型商品,A,B兩地都有出售,且價(jià)格相同、某地居民從兩地之一購(gòu)得商品后運(yùn)回的費(fèi)用是:每單位距離A地的運(yùn)費(fèi)是B地的運(yùn)費(fèi)的3倍,已知A,B兩地距離為10千米,顧客選擇A或B地購(gòu)買(mǎi)這種商品的標(biāo)準(zhǔn)是:包括運(yùn)費(fèi)和價(jià)格的總費(fèi)用較低,求A,B兩地的售貨區(qū)域的分界線的曲線形狀,并指出曲線上、曲線內(nèi)、曲線外的居民應(yīng)如何選擇購(gòu)貨地點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,在我市某普通中學(xué)高中生中隨機(jī)抽取200名學(xué)生,得到如下2×2列聯(lián)表:
喜歡數(shù)學(xué)課 | 不喜歡數(shù)學(xué)課 | 合計(jì) | |
男 | 30 | 60 | 90 |
女 | 20 | 90 | 110 |
合計(jì) | 50 | 150 | 200 |
經(jīng)計(jì)算K2≈6.06,根據(jù)獨(dú)立性檢驗(yàn)的基本思想,約有(填百分?jǐn)?shù))的把握認(rèn)為“性別與喜歡數(shù)學(xué)課之間有關(guān)系”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線斜率為0.
(1)求,
(2)若存在,使得,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com