【題目】某商場(chǎng)為了了解某日旅游鞋的銷售情況,抽取了部分顧客所購(gòu)鞋的尺寸,將所得數(shù)據(jù)整理后,畫(huà)出頻率分布直方圖如圖所示.已知從左到右前3個(gè)小組的頻率之比為1∶2∶3,第4小組與第5小組的頻率分布如圖所示,第2小組的頻數(shù)為10,則第4小組顧客的人數(shù)是______.
【答案】15
【解析】
先求得第4小組與第5小組的頻率,結(jié)合前3個(gè)小組的頻率之比為1∶2∶3,即可求得各組的頻率.結(jié)合第2小組的頻數(shù)為10,可求得抽取的總?cè)藬?shù),即可由第4組的頻率求得第4組的人數(shù).
由題意得第4小組與第5小組的頻率分別為和,
所以前3組的頻率之和為0.6.又因?yàn)閺淖蟮接仪?/span>3個(gè)小組的頻率之比為1∶2∶3,
所以從左到右第2小組的頻率為0.2.因?yàn)榈?/span>2小組的頻數(shù)為10,
所以抽取的顧客人數(shù)是.
故第4小組顧客的人數(shù)是.
故答案為:15
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,且過(guò)點(diǎn),若的兩焦點(diǎn)與其中一個(gè)頂點(diǎn)能構(gòu)成一個(gè)等邊三角形.
(1)求的方程.
(2)已知過(guò)的兩條直線,(斜率都存在)與的右半部分(軸右側(cè))分別相交于,兩點(diǎn),且的面積為,試判斷,的斜率之積是否為定值?若是,求出定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐S-ABC的底面是以AB為斜邊的等腰直角三角形,SA=SB= SC=2,AB=2,設(shè)S、A、B、C四點(diǎn)均在以O為球心的某個(gè)球面上。則點(diǎn)O到平面ABC的距離為________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】調(diào)查某校高三年級(jí)男生的身高,隨機(jī)抽取40名高三男生,實(shí)測(cè)身高數(shù)據(jù)(單位:cm)如下:
171 | 163 | 163 | 166 | 166 | 168 | 168 | 160 | 168 | 165 |
171 | 169 | 167 | 169 | 151 | 168 | 170 | 168 | 160 | 174 |
165 | 168 | 174 | 159 | 167 | 156 | 157 | 164 | 169 | 180 |
176 | 157 | 162 | 161 | 158 | 164 | 163 | 163 | 167 | 161 |
(1)作出頻率分布表;
(2)畫(huà)出頻率分布直方圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)時(shí),求在上的單調(diào)區(qū)間;
(2)且, 均恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】12個(gè)朋友每周聚餐一次,每周他們分成三組,每組4人,不同組坐不同的桌子.若要求這些朋友中任意兩個(gè)人至少有一次同坐一張桌子,則至少需要周____周.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓周上分布著2002 個(gè)點(diǎn),現(xiàn)將它們?nèi)我獾厝境砂咨蚝谏,如果從某一點(diǎn)開(kāi)始,依任一方向繞圓周運(yùn)動(dòng)到任一點(diǎn),所經(jīng)過(guò)的(包括該點(diǎn)本身)白點(diǎn)總數(shù)恒大于黑點(diǎn)總數(shù),則稱該點(diǎn)為好點(diǎn).為確保圓周上至少有一個(gè)好點(diǎn),試求所染黑點(diǎn)數(shù)目的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】曲線的參數(shù)方程為(為參數(shù)),是曲線上的動(dòng)點(diǎn),且是線段的中點(diǎn),點(diǎn)的軌跡為曲線,直線的極坐標(biāo)方程為,直線與曲線交于兩點(diǎn).
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)寫(xiě)出過(guò)點(diǎn)的直線的參數(shù)方程,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知空間9點(diǎn)集,其中任意四點(diǎn)不共面.在這9個(gè)點(diǎn)間聯(lián)結(jié)若干條線段,構(gòu)成一個(gè)圖G,使圖中不存在四面體.問(wèn)圖G中最多有多少個(gè)三角形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com