如圖,是一個(gè)幾何體的三視圖,正視圖和側(cè)視圖都是由一個(gè)邊長為2的等邊三角形和一個(gè)長為2寬為1的矩形組成.
(1)求此幾何體的表面積;(2)求此幾何體的體積.
考點(diǎn):棱柱、棱錐、棱臺的體積,由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由幾何體的三視圖知:該幾何體是一個(gè)側(cè)棱長為2,底面直徑為2的圓錐和高為1直徑為2的圓柱的組合體,由此能求出此幾何體的表面積和體積.
解答: 解:(1)由幾何體的三視圖知:
該幾何體是一個(gè)側(cè)棱長為2,底面直徑為2的圓錐和高為1直徑為2的圓柱的組合體,
∴此幾何體的表面積S=2π×1+2π=4π.
(2)此幾何體的體積:
V=π×1+
1
3
π×
4-1
=(
3
3
+1)π.
點(diǎn)評:本題考查幾何體的表面積和體積的求法,是中檔題,解題時(shí)要注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1的離心率為2,則其漸近線的斜率為( 。
A、±
5
B、±
3
C、±
3
3
D、±
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,下面陰影部分的面積是
 
(結(jié)果保留π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
3x-y-3≤0
x-y+1≥0
x≥0,y≥0
,若目標(biāo)函數(shù)z=
y+m
x-4
的最大值為2,則z的最小值為(  )
A、
1
2
B、
3
2
C、
5
4
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項(xiàng)都是正數(shù)的等比數(shù)列{an}的公比q≠1,且a2,
1
2
a3,a1成等差數(shù)列,則
a3+a4+a5
a4+a5+a6
的值為( 。
A、
1-
5
2
B、
5
+1
2
C、
5
-1
2
D、
5
+1
2
5
-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,設(shè)曲線y=
1
x
上的點(diǎn)與x軸上的點(diǎn)順次構(gòu)成等腰直角三角形OB1A1,A1B2A2,…,直角頂點(diǎn)在曲線y=
1
x
上,則x軸上的點(diǎn)An(n=1,2,3,…,n,…)的橫坐標(biāo)依次組成的數(shù)列為{xn},則數(shù)列{xn}的通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x,點(diǎn)M(1,0)關(guān)于y軸的對稱點(diǎn)為N,直線l過點(diǎn)M交拋物線于A,B兩點(diǎn),
(1)證明:直線NA,NB的斜率互為相反數(shù);
(2)求△ANB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司招收男職員x名,女職員y名,須滿足約束條件
2x-4y≥-7
2x-11≤0
2x+3y-9≥0
則10x+10y的最大值是( 。
A、80B、85C、90D、100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F是拋物線y2=2px(p>0)的焦點(diǎn),P是拋物線上一點(diǎn),F(xiàn)P延長線交y軸于Q,若P恰好是FQ的中點(diǎn),則|PF|=
 

查看答案和解析>>

同步練習(xí)冊答案