若拋物線y2=mx與橢圓=1有一個共同的焦點,則m=______________.
±8
橢圓的焦點為(±2,0),∴||=2,m=±8.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,O為坐標(biāo)原點,已知點,
若點C滿足,點C的軌跡與拋物線交于A、B兩點.
(I)求證:;
(II)在軸正半軸上是否存在一定點,使得過點P的任意一條拋物線的弦的長度是原點到該弦中點距離的2倍,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)已知平面上的動點及兩定點A(-2,0),B(2,0),直線PA,PB的斜率分別是,且·。(1)求動點P的軌跡C的方程;
(2)已知直線與曲線C交于M,N兩點,且直線BM,BN的斜率都存在并滿足·,求證:直線過原點。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,已知一個圓心在坐標(biāo)原點,半徑為2的圓,從這個圓上任意一點Py軸作垂線段PP′,P′為垂足.
(1)求線段PP′中點M的軌跡C的方程;
(2)過點Q(-2,0)作直線l與曲線C交于A、B兩點,設(shè)N是過點,且以為方向向量的直線上一動點,滿足O為坐標(biāo)原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點C為圓的圓心,點A(1,0),P是圓上的動點,點Q在圓的半徑CP上,且
(Ⅰ)當(dāng)點P在圓上運動時,求點Q的軌跡方程;
(Ⅱ)若直線與(Ⅰ)中所求點Q的軌跡交于不同兩點F,H,O是坐標(biāo)原點,且,求△FOH的面積的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



A,B恒有
(1)求弦AB中點M的軌跡方程
(2)以AP和PB為鄰邊作矩形AQBP,求點Q軌跡方程
(3)若x,y滿足Q點軌跡方程,求的最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

1,3,5

 
已知雙曲線的左、右焦點分別是F1、F2.

(1)求雙曲線上滿足的點P的坐標(biāo);
(2)橢圓C2的左、右頂點分別是雙曲線C1的左、右焦點,橢圓C2的左、右焦點分別是雙曲線C1的左、右頂點,若直線與橢圓恒有兩個不同的交點AB,且(其中O為坐標(biāo)原點),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若命題“曲線上的點的坐標(biāo)是方程的解”是正確的,則下列命題一定正確的是(  )
A.方程的曲線是
B.曲線的方程是
C.點集
D.點集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

中,已知.當(dāng)動點滿足條件時,求動點的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案