【題目】某單位共有500名職工,其中不到35歲的有125人,35-49歲的有a人,50歲及以上的有b人,現(xiàn)用分層抽樣的方法,從中抽出100名職工了解他們的健康情況:
(1)求不到35歲的職工要抽取的人數(shù);
(2)如果已知35-49歲的職工抽取了56人,求a的值,并求50歲及以上的職工要抽取的人數(shù).
【答案】(1)25;(2),19.
【解析】
(1) 根據(jù)分層抽樣的定義建立比例關(guān)系即可得到結(jié)論.
(2)根據(jù)分層抽樣的定義建立比例關(guān)系,計(jì)算出的值,根據(jù)總?cè)藬?shù)計(jì)算出的值,進(jìn)而求出50歲及以上的職工要抽取的人數(shù).
解:(1)由題意,抽樣比為,
則不到35歲的職工抽取的人數(shù)為.
(2)由于35-49歲的職工抽取了56人,則有,解得.
因?yàn)?/span>50歲及以上的職工人數(shù),
所以50歲及以上的職工抽取的人數(shù)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科研院所共有科研人員800人,其中具有高級(jí)職稱(chēng)的160人,具有中級(jí)職稱(chēng)的320人,具有初級(jí)職稱(chēng)的240人,無(wú)職稱(chēng)的80人,欲了解該科研院所科研人員的創(chuàng)新能力,決定抽取100名科研人員進(jìn)行調(diào)查,應(yīng)怎樣進(jìn)行抽樣?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 甲、乙二人比賽,甲勝的概率為,則比賽5場(chǎng),甲勝3場(chǎng)
B. 某醫(yī)院治療一種疾病的治愈率為10%,前9個(gè)病人沒(méi)有治愈,則第10個(gè)病人一定治愈
C. 隨機(jī)試驗(yàn)的頻率與概率相等
D. 天氣預(yù)報(bào)中,預(yù)報(bào)明天降水概率為90%,是指降水的可能性是90%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】返鄉(xiāng)創(chuàng)業(yè)的大學(xué)生一直是人們比較關(guān)注的對(duì)象,他們從大學(xué)畢業(yè),沒(méi)有選擇經(jīng)濟(jì)發(fā)達(dá)的大城市,而是回到自己的家鄉(xiāng),為養(yǎng)育自己的家鄉(xiāng)貢獻(xiàn)自己的力量,在享有“國(guó)際花園城市”稱(chēng)號(hào)的溫江幸福田園,就有一個(gè)由大學(xué)畢業(yè)生創(chuàng)辦的農(nóng)家院“小時(shí)代”,其獨(dú)特的裝修風(fēng)格和經(jīng)營(yíng)模式,引來(lái)無(wú)數(shù)人的關(guān)注,帶來(lái)紅紅火火的現(xiàn)狀,給青年大學(xué)生們就業(yè)創(chuàng)業(yè)上很多新的啟示.在接受采訪(fǎng)中,該老板談起以下情況:初期投入為72萬(wàn)元,經(jīng)營(yíng)后每年的總收入為50萬(wàn)元,第n年需要付出房屋維護(hù)和工人工資等費(fèi)用是首項(xiàng)為12,公差為4的等差數(shù)列(單位:萬(wàn)元).
(1)求;
(2)該農(nóng)家樂(lè)第幾年開(kāi)始盈利?能盈利幾年?(即總收入減去成本及所有費(fèi)用之差為正值)
(3)該農(nóng)家樂(lè)經(jīng)營(yíng)多少年,其年平均獲利最大?年平均獲利的最大值是多少?(年平均獲利前年總獲利)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn) (a>0,b>0)的右焦點(diǎn)為,右頂點(diǎn)為A,過(guò)F作的垂線(xiàn)與雙曲線(xiàn)交于、兩點(diǎn),過(guò)分別作的垂線(xiàn),兩垂線(xiàn)交于點(diǎn),若到直線(xiàn)的距離小于, 則雙曲線(xiàn)的漸近線(xiàn)斜率的取值范圍是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)設(shè),討論的單調(diào)性;
(Ⅱ)若對(duì)任意恒有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離比到定直線(xiàn)的距離小1.
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)過(guò)點(diǎn)任意作互相垂直的兩條直線(xiàn),分別交曲線(xiàn)于點(diǎn)和.設(shè)線(xiàn)段, 的中點(diǎn)分別為,求證:直線(xiàn)恒過(guò)一個(gè)定點(diǎn);
(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(t,1)為函數(shù)y=ax2+bx+4(a,b為常數(shù),且a≠0)與y=x圖象的交點(diǎn).
(1)求t;
(2)若函數(shù)y=ax2+bx+4的圖象與x軸只有一個(gè)交點(diǎn),求a,b;
(3)若1≤a≤2,設(shè)當(dāng)≤x≤2時(shí),函數(shù)y=ax2+bx+4的最大值為m,最小值為n,求m﹣n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x-b|的最小值為1.
(1)證明:2a+b=2;
(2)若a+2b≥tab恒成立,求實(shí)數(shù)t的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com