4.已知函數(shù)f(x)=ax2-1的圖象在點A(1,f(1))處的切線l與直線8x-y+2=0平行,若數(shù)列$\left\{{\frac{1}{f(n)}}\right\}$的前n項和為Sn,則S2015的值為(  )
A.$\frac{4030}{4031}$B.$\frac{2014}{4029}$C.$\frac{2015}{4031}$D.$\frac{4029}{4031}$

分析 f′(x)=2ax,由于函數(shù)f(x)=ax2-1的圖象在點A(1,f(1))處的切線l與直線8x-y+2=0平行,可得:f′(1)=2a=8,解得a=4.于是f(n)=4n2-1.利用“裂項求和”方法即可得出.

解答 解:f′(x)=2ax,
∵函數(shù)f(x)=ax2-1的圖象在點A(1,f(1))處的切線l與直線8x-y+2=0平行,
∴f′(1)=2a=8,解得a=4.
∴f(x)=4x2-1,f(n)=4n2-1.
∴$\frac{1}{f(n)}$=$\frac{1}{4{n}^{2}-1}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴數(shù)列$\left\{{\frac{1}{f(n)}}\right\}$的前n項和Sn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.
則S2015=$\frac{2015}{2×2015+1}$=$\frac{2015}{4031}$.
故選:C.

點評 本題考查了導(dǎo)數(shù)幾何意義的應(yīng)用、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,F(xiàn)為PC的中點,PA=2AB=2.
(1)求證:平面PAC⊥平面AEF;
(2)求二面角C-AE-F的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知$f(x)=\left\{\begin{array}{l}|{{{log}_3}x}|,0<x≤3\\ \frac{1}{3}{x^2}-\frac{10}{3}x+8,x>3\end{array}\right.,a,b,c,d$是互不相同的正數(shù),且f(a)=f(b)=f(c)=f(d),則abcd的取值范圍是(21,24).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知四面體ABCD中,AB=CD=2,E、F分別為BC、AD的中點,且異面直線AB與CD所成的角為$\frac{π}{3}$,則EF=1或$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)P是△ABC內(nèi)一點,且$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{CP}$=$\overrightarrow{0}$,$\overrightarrow{BD}$=$\frac{1}{3}$$\overrightarrow{BC}$,則$\overrightarrow{AD}$+$\overrightarrow{AP}$=(  )
A.$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$B.$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$C.$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$D.$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合M={x|x2≥9},N={-3,0,1,3,4},則M∩N=( 。
A.{-3,0,1,3,4}B.{-3,3,4}C.{1,3,4}D.{x|x≥±2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.對于給定的正整數(shù)n和正數(shù)R,若等差數(shù)列a1,a2,a3,…滿足a${\;}_{1}^{2}+{a}_{2n+1}^{2}$≤R,則S=a2n+1+a2n+2+a2n+3+…+a4n+1的最大值為$\frac{(2n+1)\sqrt{10R}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等比數(shù)列{an}的公比不為1,a1=$\frac{1}{2}$,且a1,2a2,4a3成等差數(shù)列.
(1)求{an}的通項公式;
(2)求證:a1+a3+a5+…+a2n-1<$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某校為了分析學(xué)生身體發(fā)育的狀況,從一次體檢中隨機(jī)抽取了高三男生中20人的數(shù)據(jù),將身高(單位:cm)用莖葉圖記錄如圖;由此表估計該校高三男生身高在[165,175]的概率為(  )
A.$\frac{3}{5}$B.$\frac{9}{20}$C.$\frac{11}{20}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案