已知函數(shù)為自然對數(shù)的底)
(1)求的最小值;
(2)設(shè)不等式的解集為,且,求實數(shù)的取值范圍.

(1);(2).

解析試題分析:(1)先求導(dǎo)函數(shù),然后根據(jù)函數(shù)的單調(diào)性研究函數(shù)的極值點,連續(xù)函數(shù)在區(qū)間內(nèi)只有一個極值,那么極小值就是其最小值;
(2)根據(jù)不等式的解集為,且,可轉(zhuǎn)化成對任意的,不等式恒成立.即對任意的恒成立,分離參數(shù)得,令,利用導(dǎo)數(shù)研究的最小值,使即可.
試題解析:(1),解得;令,解得 .
從而在內(nèi)單調(diào)遞減,內(nèi)單調(diào)遞增.所以,.
(2)因為不等式的解集為,且,
所以,對任意的,不等式恒成立,
.當(dāng)時, 上述不等式顯然成立,故只需考慮的情況.
變形得,令.
,解得;令,解得
從而內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.所以,當(dāng)時,取得最小值,從而所求實數(shù)的取值范圍是.
考點:1.利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值;2不等式恒成立問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)判斷函數(shù)上的單調(diào)性,并用定義加以證明;
(Ⅱ)若對任意,總存在,使得成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù), 上為增函數(shù),且,求解下列各題:
(1)求的取值范圍;
(2)若上為單調(diào)增函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)為常數(shù))的圖象過原點,且對任意 總有成立;
(1)若的最大值等于1,求的解析式;
(2)試比較的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,.
(Ⅰ)求證:;
(Ⅱ)設(shè)直線、均相切,切點分別為()、(),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。(為常數(shù),
(Ⅰ)若是函數(shù)的一個極值點,求的值;
(Ⅱ)求證:當(dāng)時,上是增函數(shù);
(Ⅲ)若對任意的,總存在,使不等式成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)當(dāng),時,求函數(shù)的最大值;
(2)令,其圖象上存在一點,使此處切線的斜率,求實數(shù)的取值范圍;
(3)當(dāng),,時,方程有唯一實數(shù)解,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)在點處的切線與圓相切,求的值;
(2)當(dāng)時,函數(shù)的圖像恒在坐標(biāo)軸軸的上方,試求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若當(dāng),求的取值范圍

查看答案和解析>>

同步練習(xí)冊答案