11.已知定義在D=($\frac{-1-\sqrt{5}}{2}$,$\frac{-1+\sqrt{5}}{2}$)上的函數(shù)f(x)=$\frac{1}{1-x-{x}^{2}}$,存在無(wú)窮數(shù)列{an},滿(mǎn)足f(x)=a0+a1x+a2x2+…+anxn+…
(1)試求數(shù)列{an}的前三項(xiàng)a0、a1、a2的值,并證明:對(duì)任意的n∈N*都有an≥n;
(2)數(shù)列{an}滿(mǎn)足bn=$\frac{{a}_{n}}{{a}_{n-1}{a}_{n+1}}$,n∈N*,是否存在正常數(shù)r,使{bn}的前n項(xiàng)和Sn≤rf(x)對(duì)任意的x∈D恒成立?若存在,試求出常數(shù)r的最小值;若不存在,請(qǐng)說(shuō)明理由.

分析 (1)由f(x)=$\frac{1}{1-x-{x}^{2}}$,得(1-x-x2)$({a}_{0}+{a}_{1}x+{a}_{2}{x}^{2}+…+{a}_{n}{x}^{n}+…)=1$,然后利用展開(kāi)式中x,x2的系數(shù)為0,常數(shù)項(xiàng)為1求得數(shù)列{an}的前三項(xiàng)a0、a1、a2的值,再由xn(n≥2)的系數(shù)為0得到數(shù)列遞推式,說(shuō)明數(shù)列為遞增數(shù)列,從而證得an≥n;
(2)由bn=$\frac{{a}_{n}}{{a}_{n-1}{a}_{n+1}}$,利用裂項(xiàng)相消法求數(shù)列{bn}的前n項(xiàng)和為Sn,放大后證得Sn<2,把Sn≤rf(x)恒成立轉(zhuǎn)化為2x2+2x+r-2≥0在x∈D=($\frac{-1-\sqrt{5}}{2}$,$\frac{-1+\sqrt{5}}{2}$)上恒成立,結(jié)合判別式可得滿(mǎn)足條件的正常數(shù)r存在.

解答 解:(1)由f(x)=$\frac{1}{1-x-{x}^{2}}$=a0+a1x+a2x2+…+anxn+…
得(1-x-x2)$({a}_{0}+{a}_{1}x+{a}_{2}{x}^{2}+…+{a}_{n}{x}^{n}+…)=1$,
顯然x,x2的系數(shù)為0,常數(shù)項(xiàng)為1,
∴a0=1,a1-a0=0,a2-a1-a0=0,
則a0=1,a1=1,a2=2,
考慮xn(n≥2)的系數(shù),則有an-an-1-an-2=0(n≥2),
即an+2=an+1+an,
∴數(shù)列{an}單調(diào)遞增,
又∵a1=1,a2=2,
∴對(duì)任意的n∈N*都有an≥n;
(2)bn=$\frac{{a}_{n}}{{a}_{n-1}{a}_{n+1}}$=$\frac{{a}_{n+1}-{a}_{n-1}}{{a}_{n-1}{a}_{n+1}}$=$\frac{1}{{a}_{n-1}}-\frac{1}{{a}_{n+1}}$,
∴Sn=($\frac{1}{{a}_{0}}-\frac{1}{{a}_{2}}$)+($\frac{1}{{a}_{1}}-\frac{1}{{a}_{3}}$)+($\frac{1}{{a}_{2}}-\frac{1}{{a}_{4}}$)+…+($\frac{1}{{a}_{n-1}}-\frac{1}{{a}_{n+1}}$)
=$\frac{1}{{a}_{0}}+\frac{1}{{a}_{1}}-\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}$=2-$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}$<2.
若存在正常數(shù)r,使{bn}的前n項(xiàng)和Sn≤rf(x)對(duì)任意的x∈D恒成立,
即rf(x)=$\frac{r}{1-x-{x}^{2}}≥2$對(duì)任意的x∈D恒成立,
∵1-x-x2>0在x∈D上成立,
也就是r≥2-2x-2x2,即2x2+2x+r-2≥0在x∈D=($\frac{-1-\sqrt{5}}{2}$,$\frac{-1+\sqrt{5}}{2}$)上恒成立.
∵二次函數(shù)y=2x2+2x+r-2的對(duì)稱(chēng)軸方程為x=-$\frac{1}{2}$∈($\frac{-1-\sqrt{5}}{2}$,$\frac{-1+\sqrt{5}}{2}$),
則需△=22-8(r-2)=20-8r≤0,
即r$≥\frac{5}{2}$.
故存在正常數(shù)r,使{bn}的前n項(xiàng)和Sn≤rf(x)對(duì)任意的x∈D恒成立.

點(diǎn)評(píng) 本題考查了數(shù)列的函數(shù)特性,考查了數(shù)列遞推式,訓(xùn)練了裂項(xiàng)相消法求數(shù)列的和,考查了等差數(shù)列通項(xiàng)公式的求法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若a,b均為大于1的正數(shù),且ab=100,則(lga)2+(lgb)2的最小值是(  )
A.1B.2C.$\frac{5}{2}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.下列程序運(yùn)行的結(jié)果是5050.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知cosα=$\frac{3}{5}$,cos(α+β)=-$\frac{5}{13}$,且α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知點(diǎn)F1,F(xiàn)2分別是雙曲線(xiàn)$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左,右焦點(diǎn),過(guò)F2且垂直于x軸的直線(xiàn)與雙曲線(xiàn)交于M,N兩點(diǎn),若$\overrightarrow{M{F}_{1}}$•$\overrightarrow{N{F}_{1}}$>0,則該雙曲線(xiàn)的離心率e的取值范圍是( 。
A.($\sqrt{2}$,$\sqrt{2}$+1)B.(1,$\sqrt{2}$+1)C.(1,$\sqrt{3}$)D.$({\sqrt{3},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)f(x)=|x2-x-a|在x∈(0,1)上存在最大值,則實(shí)數(shù)a的取值范圍是[-$\frac{1}{8}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知雙曲線(xiàn)C的漸近線(xiàn)方程為y=±x,一個(gè)焦點(diǎn)為(2$\sqrt{2}$,0).
(1)求雙曲線(xiàn)C的方程;
(2)過(guò)雙曲線(xiàn)C上的任意一點(diǎn)P,分別作這兩條漸近線(xiàn)的平行線(xiàn)與這兩條漸近線(xiàn)得到四邊形ODPG,證明四邊形ODPG的面積是一個(gè)定值;
(3)(普通中學(xué)做)命題甲:設(shè)直線(xiàn)x=0與y=h(h>0)在第一象限內(nèi)與漸近線(xiàn)y=x所圍成的三角形OMN繞著y軸旋轉(zhuǎn)一周所得幾何體的體積.

(重點(diǎn)中學(xué)做)命題乙:設(shè)直線(xiàn)y=0與y=h(h>0)在第一象限內(nèi)與雙曲線(xiàn)及漸近線(xiàn)所圍成的如圖所示的圖形OABN,求它繞y軸旋轉(zhuǎn)一圈所得幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知a1=$\frac{1}{4}$(1-$\frac{1}{3}$),a2=$\frac{1}{4}$($\frac{1}{3}$-$\frac{1}{5}$),a3=$\frac{1}{4}$($\frac{1}{5}$-$\frac{1}{7}$),a4=$\frac{1}{4}$($\frac{1}{7}$-$\frac{1}{9}$),…,以此類(lèi)推a1+a2+a3+…+a1008的值為$\frac{504}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,|$\overrightarrow{a}$|=3,|$\overrightarrow$|=1,則|$\overline{a}$+2$\overrightarrow$|=$\sqrt{19}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案