【題目】已知函數(shù)(,為常數(shù))在內(nèi)有兩個(gè)極值點(diǎn),()
(1)求實(shí)數(shù)的取值范圍;
(2)求證:.
【答案】(1) (2)見證明
【解析】
(1)推導(dǎo)出x>0,f′(x)=,設(shè)h(x)=ex﹣1﹣ax,x>0,則y=h(x)在(0,2)上存在兩個(gè)零點(diǎn),由h′(x)=ex﹣1﹣a,由此能求出實(shí)數(shù)a的取值范圍;
(2)令H(x)=h(x)﹣h(2+2lna﹣x),0<x<1+lna,則H′(x)=h′(x)+h′(2+2lna﹣x)0,從而H(x)在(0,1+lna)上遞增,進(jìn)而H(x)<H(1+lna)=0,由此能證明<2(1+lna).
解:(1)由,可得,
記,有題意,知在上存在兩個(gè)零點(diǎn).
則
當(dāng)時(shí),,則在上遞增,至少有一個(gè)零點(diǎn),不合題意;
當(dāng)時(shí),由,得
(i)若且,即時(shí),在上遞減,遞增;
則,則,
從而在和上各有一個(gè)零點(diǎn)。
所以在上存在兩個(gè)零點(diǎn).
(ii)若,即時(shí),在上遞減,至多一個(gè)零點(diǎn),舍去.
(iii)若且,即時(shí),此時(shí)在上有一個(gè)零點(diǎn),而在上沒有零點(diǎn),舍去.
綜上可得,.
(2)令則
,
,
,
所以,在上遞減,從而,
即
而,且在遞增;
,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】按照國際乒聯(lián)的規(guī)定,標(biāo)準(zhǔn)的乒乓球在直徑符合條件下,重量為2.7克,其重量的誤差在區(qū)間內(nèi)就認(rèn)為是合格產(chǎn)品,在正常情況下樣本的重量誤差服從正態(tài)分布.現(xiàn)從某廠生產(chǎn)的一批產(chǎn)品中隨機(jī)抽取10件樣本,其重量如下:
2.72 2.68 2.7 2.75 2.66 2.7 2.6 2.69 2.7 2.8
(1)計(jì)算上述10件產(chǎn)品的誤差的平均數(shù)及標(biāo)準(zhǔn)差;
(2)①利用(1)中求的平均數(shù),標(biāo)準(zhǔn)差,估計(jì)這批產(chǎn)品的合格率能否達(dá)到;
②如果產(chǎn)品的誤差服從正態(tài)分布,那么從這批產(chǎn)品中隨機(jī)抽取10件產(chǎn)品,則有不合格產(chǎn)品的概率為多少.(附:若隨機(jī)變量服從正態(tài)分布,則,,.用0.6277,用0.9743分別代替計(jì)算)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.公差為0的等差數(shù)列是等比數(shù)列B.成等比數(shù)列的充要條件是
C.公比的等比數(shù)列是遞減數(shù)列D.是成等差數(shù)列的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出的是2017年11月-2018年11月某工廠工業(yè)原油產(chǎn)量的月度走勢圖,則以下說法正確的是( )
A. 2018年11月份原油產(chǎn)量約為51.8萬噸
B. 2018年11月份原油產(chǎn)量相對2017年11月增加1.0%
C. 2018年11月份原油產(chǎn)量比上月減少54.9萬噸
D. 2018年1-11月份原油的總產(chǎn)量不足15000萬噸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F1、F2是橢圓C1:+y2=1與雙曲線C2的公共焦點(diǎn),A、B分別是C1、C2在第二、四象限的公共點(diǎn).若四邊形AF1BF2為矩形,則C2的離心率是___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是()
A. 若函數(shù)為奇函數(shù),則;
B. 若數(shù)列為常數(shù)列,則既是等差數(shù)列也是等比數(shù)列;
C. 在中,是的充要條件;
D. 若兩個(gè)變量的相關(guān)系數(shù)為,則越大,與之間的相關(guān)性越強(qiáng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐中,菱形所在的平面,是中點(diǎn),是上的點(diǎn).
(1)求證:平面平面;
(2)若是的中點(diǎn),當(dāng)時(shí),是否存在點(diǎn),使直線與平面的所成角的正弦值為?若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,O是正方形的中心,E、F分別為棱AB、的中點(diǎn),則( )
A.直線EF與共面B.
C.平面平面D.OF與所成角為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com