18.已知函數(shù)g(x)=x+$\frac{2}{x}$-2.
(1)證明:函數(shù)g(x)在[$\sqrt{2}$,+∞)上是增函數(shù);
(2)若不等式g(2x)-k•2x≥0在x∈[-1,1]上有解,求實數(shù)k的取值范圍.

分析 (1)根據(jù)函數(shù)單調(diào)性的定義證明即可;
(2)問題化為1+2•${(\frac{1}{{2}^{x}})}^{2}$-2•$\frac{1}{{2}^{x}}$≥k,令t=$\frac{1}{{2}^{x}}$,則k≤2t2-2t+1,從而求出k的范圍即可.

解答 解:(1)設(shè)$\sqrt{2}$≤x1<x2,
∵g(x1)-g(x2)=$\frac{{(x}_{1}{-x}_{2}){{(x}_{1}x}_{2}-2)}{{{x}_{1}x}_{2}}$,
∵$\sqrt{2}$≤x1<x2,∴x1-x2<0,2<x1x2,即x1x2-2>0.
∴g(x1)-g(x2)<0,即g(x1)<g(x2),
所以函數(shù)g(x)在[$\sqrt{2}$,+∞)上是增函數(shù).
解:(2)g(2x)-k•2x≥0,可化為2x+$\frac{2}{{2}^{x}}$-2≥k•2x,
化為1+2•${(\frac{1}{{2}^{x}})}^{2}$-2•$\frac{1}{{2}^{x}}$≥k,
令t=$\frac{1}{{2}^{x}}$,則k≤2t2-2t+1,
因x∈[-1,1],故t∈[$\frac{1}{2}$,2],
記h(t)=2t2-2t+1,因為t∈[$\frac{1}{2}$,2],故h(t)max=5,
所以k的取值范圍是(-∞,5].

點評 本題考查了函數(shù)的單調(diào)性問題,考查轉(zhuǎn)化思想以及二次函數(shù)的性質(zhì),是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求值:
(1)(${\frac{27}{8}}$)${\;}^{-\frac{2}{3}}}$-3-1+(-$\frac{7}{8}$)0
(2)lg4+3lg5+lg$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知平面向量$\overrightarrow α$,$\overrightarrow β$(${\overrightarrow α$≠$\overrightarrow β}$)滿足$\overrightarrow{|α|}$=2,且$\overrightarrow α$與$\overrightarrow β$-$\overrightarrow α$的夾角為120°,t∈R,則|(1-t)$\overrightarrow α$+t$\overrightarrow β}$|的最小值是$\sqrt{3}$.已知$\overline{a}$•$\overrightarrow$=0,向量$\overrightarrow{c}$滿足($\overrightarrow{c}$-$\overrightarrow{a}$)($\overrightarrow{c}$-$\overrightarrow$)=0,|$\overrightarrow{a}$-$\overrightarrow$|=5,|$\overrightarrow{a}$-$\overrightarrow{c}$|=3,則$\overrightarrow{a}$•$\overrightarrow{c}$的最大值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x-klnx,(常數(shù)k>0).
(1)試確定函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對于任意x≥1,f(x)>0恒成立,試確定實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)集合A={-1,0,1},B={x|x>0},則A∩B={1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=4x-2x+1-a(a∈R)
(1)當(dāng)a=3時,求函數(shù)f(x)的零點;
(2)若f(x)有零點,且t=$\frac{a-3}{a+3}$,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知集合A={1,a},B={a2},若A∪B=A,則實數(shù)a=-1或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=x2-2x+2在區(qū)間(0,4]的值域為( 。
A.(2,10]B.[1,10]C.(1,10]D.[2,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.集合A={x|y=x+1},B={y|y=2x,x∈R},則A∩B為( 。
A.{(0,1),(1,2)}B.{0,1}C.(0,+∞)D.

查看答案和解析>>

同步練習(xí)冊答案