【題目】如圖,在四棱錐中,四邊形為平行四邊形,,平面,,.
(1)求證:平面;
(2)求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)由題意知為,利用等腰三角形三線合一的思想得出,由平面可得出,再利用直線與平面垂直的判定定理可得出平面;
(2)以點為坐標原點,、所在直線分別為軸、軸建立空間直角坐標系,計算出平面和平面的法向量,然后利用空間向量法計算出二面角的余弦值.
(1)因為四邊形是平行四邊形,,所以為的中點.
又,所以.
因為平面,平面,所以.
又,平面,平面,故平面;
(2)因為,以為原點建立空間直角坐標系如下圖所示,
設,則、、、,
所以,,,
設平面的一個法向量為,則,所以,
得,令,則,,所以.
同理可求得平面的一個法向量,
所以.
又分析知,二面角的平面角為銳角,
所以二面角的余弦值為.
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,側棱垂直于底面,, 為的中點,過的平面與交于點.
(1)求證:點為的中點;
(2)四邊形是什么平面圖形?說明理由,并求其面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設n為正整數,集合A=.對于集合A中的任意元素和,記
M()=.
(Ⅰ)當n=3時,若, ,求M()和M()的值;
(Ⅱ)當n=4時,設B是A的子集,且滿足:對于B中的任意元素,當相同時,M()是奇數;當不同時,M()是偶數.求集合B中元素個數的最大值;
(Ⅲ)給定不小于2的n,設B是A的子集,且滿足:對于B中的任意兩個不同的元素,
M()=0.寫出一個集合B,使其元素個數最多,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究機構為了了解各年齡層對高考改革方案的關注程度,隨機選取了200名年齡在內的市民進行了調查,并將結果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,,,).
(1)求選取的市民年齡在內的人數;
(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人在座談會中作重點發(fā)言,求作重點發(fā)言的市民中至少有一人的年齡在內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在統(tǒng)計學中,偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計中,我們把某個同學的某刻考試成績與該科班平均分的差叫某科偏差,班主任為了了解個別學生的偏科情況,對學生數學偏差(單位:分)與物理偏差(單位:分)之間的關系進行偏差分析,決定從全班40位同學中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數據如表:
(1)已知與之間具有線性相關關系,求關于的線性回歸方程;
(2)若這次考試該班數學平均分為120分,物理平均分為92,試預測數學成績126分的同學的物理成績.
參考公式: ,
參考數據: ,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com