8.已知集合A={x|x≥4},B={x|y=ln(2x-1)},則(∁RA)∩B=( 。
A.[4,+∞)B.[0,$\frac{1}{2}}$]C.($\frac{1}{2}$,4)D.(1,4]

分析 化簡(jiǎn)集合B,求出集合A在全集U中的補(bǔ)集,再求(∁RA)∩B.

解答 解:集合A={x|x≥4},∴∁RA={x|x<4};
又B={x|y=ln(2x-1)}={x|2x-1>0}={x|x>$\frac{1}{2}$},
∴(∁RA)∩B={x|$\frac{1}{2}$<x<4}=($\frac{1}{2}$,4).
故選:C.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問(wèn)題,也考查了補(bǔ)集的定義與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知$\overrightarrow a$=(1,-2),$\overrightarrow b$=(1,λ),且$\overrightarrow a$與$\overrightarrow b$的夾角為鈍角,則實(shí)數(shù)λ的取值范圍是(  )
A.($\frac{1}{2}$,2)∪(2,+∞)B.($\frac{1}{2}$,+∞)C.(-∞,-2)∪(-2,$\frac{1}{2}$)D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)函數(shù)f(x)=axlnx(a≠0),若f′(e)=2,則f(e)的值為( 。
A.$\frac{e}{2}$B.1C.eD.2e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.cos$\frac{9π}{4}$+tan(-$\frac{7π}{6}$)+sin21π的值為$\frac{{\sqrt{2}}}{2}-\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=2sin2x-6sinx+2(x∈R)的最大值和最小值之和是( 。
A.8B.$\frac{15}{2}$C.-2D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若拋物線C:x=2py2過(guò)點(diǎn)(2,5),則拋物線C的準(zhǔn)線方程為x=-$\frac{25}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知等差數(shù)列{an}中,a2=6,a5=15,若bn=a2n,則數(shù)列{bn}的前5項(xiàng)和等于( 。
A.90B.45C.30D.186

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在△ABC中,角A,B,C所對(duì)的邊為a,b,c.若a=2,$\frac{tanA}{tanB}$=$\frac{4}{3}$,則△ABC面積的最大值為$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)f(x)定義城為(0,+∞)上的減函數(shù),且f($\frac{x}{y}$)=f(x)-f(y)(x,y∈R+),f(2)=1.
(1)求證:f(4)=2;
(2)求滿足f(x-1)-f($\frac{1}{x+6}$)≥3的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案