【題目】設(shè)橢圓的離心率,拋物線(xiàn)的焦點(diǎn)恰好是橢圓的右焦點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)作兩條斜率都存在的直線(xiàn),設(shè)與橢圓交于兩點(diǎn),與橢圓交于兩點(diǎn),若是與的等比中項(xiàng),求的最小值.
【答案】(1);(2).
【解析】
(1)求出拋物線(xiàn)的焦點(diǎn)可得,再根據(jù)離心率求得,從而可得,進(jìn)而可得結(jié)果;(2)先利用勾股定理證明,可設(shè)直線(xiàn),直線(xiàn),分別與橢圓方程聯(lián)立,根據(jù)韋達(dá)定理,兩點(diǎn)間距離公式求得 ,化為,利用基本不等式求解即可.
(1)依題意得橢圓C的右焦點(diǎn)F的坐標(biāo)為,即,
又,
所以,,故橢圓C的標(biāo)準(zhǔn)方程為.
(2)因?yàn)?/span>是與的等比中項(xiàng),
所以,即,
所以直線(xiàn),
又直線(xiàn),的斜率均存在,
所以?xún)芍本(xiàn)的斜率都不為零,
故可設(shè)直線(xiàn),直線(xiàn),
,,,,
由消去x,得,
所以,
同理得,
所以,
,
,
又,所以
(當(dāng)且僅當(dāng)時(shí)取等號(hào)),
故的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
若,求的單調(diào)區(qū)間;
是否存在實(shí)數(shù)a,使的最小值為0?若存在,求出a的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用0,1,2,3,4這五個(gè)數(shù)字組成無(wú)重復(fù)數(shù)字的自然數(shù).
(1)在組成的五位數(shù)中,所有奇數(shù)的個(gè)數(shù)有多少?
(2)在組成的五位數(shù)中,數(shù)字1和3相鄰的個(gè)數(shù)有多少?
(3)在組成的五位數(shù)中,若從小到大排列,30124排第幾個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù),),過(guò)點(diǎn)的直線(xiàn)的參數(shù)方程為(為參數(shù)).
(Ⅰ)求曲線(xiàn)的普通方程,并說(shuō)明它表示什么曲線(xiàn);
(Ⅱ)設(shè)曲線(xiàn)與直線(xiàn)分別交于,兩點(diǎn),若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)若函數(shù)在上恰有2個(gè)零點(diǎn),求的取值范圍;
(3)當(dāng)時(shí),若對(duì)任意的正整數(shù)在區(qū)間上始終存在個(gè)整數(shù)使得成立,試問(wèn):正整數(shù)是否存在最大值?若存在,求出這個(gè)最大值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計(jì)算出半音比例,為這個(gè)理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個(gè)純八度音程分成十二份,依次得到十三個(gè)單音,從第二個(gè)單音起,每一個(gè)單音的頻率與它的前一個(gè)單音的頻率的比都等于同一個(gè)常數(shù).若第一個(gè)單音的頻率為f,第三個(gè)單音的頻率為,則第十個(gè)單音的頻率為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)在定義域上的單調(diào)性;
(2)令函數(shù),是自然對(duì)數(shù)的底數(shù),若函數(shù)有且只有一個(gè)零點(diǎn),判斷與的大小,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近期濟(jì)南公交公司分別推出支付寶和微信掃碼支付乘車(chē)活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來(lái)越多的人開(kāi)始使用掃碼支付.某線(xiàn)路公交車(chē)隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動(dòng)推出的天數(shù), 表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表所示:
根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.
(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi), 與(均為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由);
(2)根據(jù)(1)的判斷結(jié)果及表中的數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測(cè)活動(dòng)推出第天使用掃碼支付的 人次;
(3)推廣期結(jié)束后,為更好的服務(wù)乘客,車(chē)隊(duì)隨機(jī)調(diào)查了人次的乘車(chē)支付方式,得到如下結(jié)果:
已知該線(xiàn)路公交車(chē)票價(jià)元,使用現(xiàn)金支付的乘客無(wú)優(yōu)惠,使用乘車(chē)卡支付的乘客享受折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)調(diào)查結(jié)果發(fā)現(xiàn):使用掃碼支付的乘客中有名乘客享受折優(yōu)惠,有名乘客享受折優(yōu)惠,有名乘客享受折優(yōu)惠.預(yù)計(jì)該車(chē)隊(duì)每輛車(chē)每個(gè)月有1萬(wàn)人次乘車(chē),根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其他因素的條件下,按照上述收費(fèi)標(biāo)準(zhǔn),試估計(jì)該車(chē)隊(duì)一輛車(chē)一年的總收入.
參考數(shù)據(jù):
其中
參考公式:
對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別為:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com