【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C的離心率為,且橢圓C過(guò)點(diǎn).

1)求橢圓C的標(biāo)準(zhǔn)方程:

2)若直線l與橢圓C相交于AB兩點(diǎn)(A,B不是左右頂點(diǎn)),且以為直徑的圓過(guò)橢圓C的右頂點(diǎn),求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

【答案】12)證明見(jiàn)解析;定點(diǎn)坐標(biāo)為

【解析】

(1) 由題意結(jié)合離心率首先確定的關(guān)系,然后結(jié)合橢圓經(jīng)過(guò)的點(diǎn)即可確定橢圓方程;

(2) 把直線的方程與橢圓的方程聯(lián)立可得根與系數(shù)的關(guān)系,再利用以為直徑的圓過(guò)橢圓的右頂點(diǎn)D,可得,即可得出的關(guān)系,從而得出答案.

解:(1)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為),,橢圓C過(guò)點(diǎn),,解得

橢圓的標(biāo)準(zhǔn)方程為.

2)設(shè),,直線代入橢圓方程得

,

,即,則

,.

因?yàn)橐?/span>為直徑的圓過(guò)橢圓的右焦點(diǎn),

,即,,

,.

解得,且均滿足

當(dāng)時(shí),l的方程為,直線過(guò)定點(diǎn),與已知矛盾;

當(dāng)時(shí),l的方程為,直線過(guò)定點(diǎn).

所以,直線l過(guò)定點(diǎn),定點(diǎn)坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

1)討論函數(shù)的單調(diào)性;

2)設(shè)函數(shù),若函數(shù)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】炎炎夏季,水蜜桃成為備受大家歡迎的一種水果,某果園的水蜜桃質(zhì)量分布如圖所示.

Ⅰ)求m的值;

Ⅱ)以頻率估計(jì)概率,若從該果園中隨機(jī)采摘5個(gè)水蜜桃,記質(zhì)量在300克以上(含300克)的個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望

Ⅲ)經(jīng)市場(chǎng)調(diào)查,該種水蜜桃在過(guò)去50天的銷售量(單位:千克)和價(jià)格(單位:元/千克)均為銷售時(shí)間t(天)的函數(shù),且銷售量近似地滿足f(t)=﹣3t+300(1≤t≤50,tN),前30天價(jià)格為g(t)=+20(1≤t≤30,tN),后20天價(jià)格為g(t)=30(31≤t≤50,tN),求日銷售額S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,過(guò)橢圓的焦點(diǎn)且與長(zhǎng)軸垂直的弦長(zhǎng)為1

1)求橢圓C的方程;

2)設(shè)點(diǎn)M為橢圓上第一象限內(nèi)一動(dòng)點(diǎn),AB分別為橢圓的左頂點(diǎn)和下頂點(diǎn),直線MBx軸交于點(diǎn)C,直線MAy軸交于點(diǎn)D,求證:四邊形ABCD的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)局部對(duì)稱點(diǎn)”.

1,其中,試判斷是否有局部對(duì)稱點(diǎn)?若有,請(qǐng)求出該點(diǎn);若沒(méi)有,請(qǐng)說(shuō)明理由;

2)若函數(shù)在區(qū)間內(nèi)有局部對(duì)稱點(diǎn),求實(shí)數(shù)m的取值范圍;

3)若函數(shù)R上有局部對(duì)稱點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)若給定非零實(shí)數(shù),對(duì)于任意實(shí)數(shù)總存在非零常數(shù),使得恒成立,則稱函數(shù)上的級(jí)類周期函數(shù)若函數(shù)上的2級(jí)2類周期函數(shù),且當(dāng)時(shí),又函數(shù).,,使成立,則實(shí)數(shù)的取值范圍是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合

1)若,求的取值范圍.

2)若,且為整數(shù)集合),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:

甲說(shuō):作品獲得一等獎(jiǎng)”; 乙說(shuō):作品獲得一等獎(jiǎng)”;

丙說(shuō):兩件作品未獲得一等獎(jiǎng)”; 丁說(shuō):作品獲得一等獎(jiǎng)”.

評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,喜歡玩電腦游戲的同學(xué)認(rèn)為作業(yè)多的有18人,認(rèn)為作業(yè)不多的有9人,不喜歡玩電腦游戲的同學(xué)認(rèn)為作業(yè)多的有8人,認(rèn)為作業(yè)不多的有15人,則認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)量的多少有關(guān)系的把握大約是多少?

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案