在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P(x,y)到兩條坐標(biāo)軸的距離之和等于它到點(diǎn)(1,1)的距離,記點(diǎn)P的軌跡為曲線為W.

(Ⅰ)給出下列三個(gè)結(jié)論:

①曲線W關(guān)于原點(diǎn)對(duì)稱;

②曲線W關(guān)于直線y=x對(duì)稱;

③曲線W與x軸非負(fù)半軸,y軸非負(fù)半軸圍成的封閉圖形的面積小于;

其中,所有正確結(jié)論的序號(hào)是  ;

(Ⅱ)曲線W上的點(diǎn)到原點(diǎn)距離的最小值為  

考點(diǎn):

軌跡方程;命題的真假判斷與應(yīng)用.

分析:

根據(jù)動(dòng)點(diǎn)P(x,y)到兩條坐標(biāo)軸的距離之和等于它到點(diǎn)(1,1)的距離,可得曲線方程,作出曲線的圖象,即可得到結(jié)論.

解答:

解:∵動(dòng)點(diǎn)P(x,y)到兩條坐標(biāo)軸的距離之和等于它到點(diǎn)(1,1)的距離,

∴|x|+|y|=

∴|xy|+x+y﹣1=0

∴xy>0,(x+1)(y+1)=2或xy<0,(y﹣1)(1﹣x)=0

函數(shù)的圖象如圖所示

∴曲線W關(guān)于直線y=x對(duì)稱;曲線W與x軸非負(fù)半軸,y軸非負(fù)半軸圍成的封閉圖形的面積小于

由y=x與(x+1)(y+1)=2聯(lián)立可得x=﹣1,∴曲線W上的點(diǎn)到原點(diǎn)距離的最小值為=

故答案為:②③;

點(diǎn)評(píng):

本題考查軌跡方程,考查數(shù)形結(jié)合的數(shù)學(xué)思想,求出軌跡方程,正確作出曲線的圖象是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫出所有正確命題的編號(hào)).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn)
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點(diǎn)
③直線l經(jīng)過無窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過兩個(gè)不同的整點(diǎn)
④直線y=kx+b經(jīng)過無窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個(gè)整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案