14.不論m為何實數(shù),直線mx-y+3+m=0恒過定點(-1,3).

分析 直線mx-y+3+m=0化為:m(x+1)+(3-y)=0,令$\left\{\begin{array}{l}{x+1=0}\\{3-y=0}\end{array}\right.$,解出即可得出.

解答 解:直線mx-y+3+m=0化為:m(x+1)+(3-y)=0,
令$\left\{\begin{array}{l}{x+1=0}\\{3-y=0}\end{array}\right.$,解得x=-1,y=3.
∴直線恒過定點(-1,3).
故答案為:(-1,3).

點評 本題考查了直線系的應用,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.下列求導數(shù)運算正確的是(  )
A.${(x+\frac{1}{x})^'}=1+\frac{1}{x^2}$B.(lgx)′=$\frac{1}{xlge}$C.(3x)′=3xln3D.(x2cosx)′=-2xsinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1.
(1)求$\overrightarrow{a}$•$\overrightarrow$;
(2)|$\overrightarrow{a}$-2$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知等比數(shù)列{an}的前n項和為Sn,且S2+a2,S1+2a2,S3+a3,成等差數(shù)列,則數(shù)列{an}的公比為( 。
A.-2B.-$\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若集合A={-2,-1,0,1,2},B={x||x|≤1},則A∩B=( 。
A.{-1,0,1}B.{0,1}C.{x|-1≤x≤1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知cosθ=-$\frac{3}{5}$,θ∈($\frac{π}{2}$,π),
求(1)sinθ的值
(2)cos($\frac{π}{3}$-θ )的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)g(x)=-x2+2lnx的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.計算$\frac{lg32-lg4}{lg2}+{({27})^{\frac{2}{3}}}$=12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.己知△ABC內(nèi)一點P滿足$\overrightarrow{AP}=\frac{1}{2}\overrightarrow{AB}$+$\frac{1}{8}$$\overrightarrow{AC}$,過點P的直線分別交邊AB、AC于M、N兩點,若$\overrightarrow{AM}=λ\overrightarrow{AB}$,$\overrightarrow{AN}=μ\overrightarrow{AC}$,則λ+μ的最小值為$\frac{9}{8}$.

查看答案和解析>>

同步練習冊答案