分析 a1=2,an+1=$\frac{n+2}{n}$an,可得$\frac{{a}_{n+1}}{{a}_{n}}=\frac{n+2}{n}$.利用“累乘求積”即可得出.
解答 解:∵a1=2,an+1=$\frac{n+2}{n}$an,可得$\frac{{a}_{n+1}}{{a}_{n}}=\frac{n+2}{n}$.
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{2}}{{a}_{1}}$•a1
=$\frac{n+1}{n-1}$•$\frac{n}{n-2}$•$\frac{n-1}{n-3}$…•$\frac{4}{2}$•$\frac{3}{1}$•2
=n(n+1).
∴$\frac{1}{{a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
則數(shù)列{$\frac{1}{{a}_{n}}$}的前2016項(xiàng)和為:1$-\frac{1}{2}$$+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{2016}$$-\frac{1}{2017}$=$\frac{2016}{2017}$.
故答案為:$\frac{2016}{2017}$.
點(diǎn)評(píng) 本題考查了遞推關(guān)系、“累乘求積”的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12種 | B. | 24種 | C. | 48種 | D. | 60種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | an=$\frac{2n}{\frac{7}{9}(1{0}^{n}-1)}$ | B. | an=$\frac{18n-9}{7(1{0}^{n}-1)}$ | C. | an=$\frac{2n-1}{7(1{0}^{n}-1)}$ | D. | an=$\frac{2n-1}{\frac{7}{8}({8}^{n}-1)}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{1009}$ | B. | $\frac{1}{2015}$ | C. | $\frac{1}{2016}$ | D. | $\frac{1}{2017}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2i | B. | $\frac{i}{2}$ | C. | 0 | D. | 2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1≤m2+n2≤4 且 0≤m+n≤2 | B. | 1≤m2+n2≤4且 1≤n-m≤2 | ||
C. | 2≤m2+n2≤4 且 1≤m+n≤2 | D. | 2≤m2+n2≤4且 0≤n-m≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com