13.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則|2$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{21}$.

分析 根據(jù)向量的模和向量的數(shù)量積計算即可.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,
則|2$\overrightarrow{a}$-$\overrightarrow$|2=4${\overrightarrow{a}}^{2}$+${\overrightarrow}^{2}$-4|$\overrightarrow{a}$|•|$\overrightarrow$|•cos120°=16+1-4×2×1×(-$\frac{1}{2}$)=21,
則|2$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{21}$,
故答案為:$\sqrt{21}$.

點評 本題考查了向量的模和向量的數(shù)量積,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.執(zhí)行如圖所示的算法框圖,如果輸出的函數(shù)值在區(qū)間[$\frac{1}{2}$,2)內(nèi),則輸入的實數(shù)x的取值范圍是[-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=$\frac{{x}^{2}+2x+2}{x+1}$(x>-1)的圖象最低點的坐標(biāo)是( 。
A.(1,2)B.(0,2)C.(1,1)D.(1,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓C經(jīng)過點A(1,3),B(2,2),并且直線m:3x-2y=0平分圓C.
(1)求圓C的方程;
(2)若直線l:y=kx+2與圓C交于M,N兩點,是否存在直線l,使得$\overrightarrow{OM}$•$\overrightarrow{ON}$=6(O為坐標(biāo)原點),若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)z=i(2+i)的共扼復(fù)數(shù)對應(yīng)的點所在象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義在R上的奇函數(shù)f(x)滿足f(-1)=0,且當(dāng)x>0時,f(x)>xf′(x),則下列關(guān)系式中成立的是( 。
A.4f($\frac{1}{2}$)>f(2)B.4f($\frac{1}{2}$)<f(2)C.f($\frac{1}{2}$)>4f(2)D.f($\frac{1}{2}$)f(2)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)△ABC中的內(nèi)角A、B、C的邊分別為a,b,c,若c=2$\sqrt{3}$,sinB=2sinA,C=$\frac{π}{3}$.
(1)求a,b的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.利用反證法證明“若x2+y2=0,則x=0且y=0”時,下列假設(shè)正確的是( 。
A.x≠0且y≠0B.x=0且y≠0C.x≠0或y≠0D.x=0或y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=-x2-6x-3,g(x)=$\frac{{{e^x}+ex}}{ex}$,實數(shù)m,n滿足m<n<0,若?x1∈[m,n],?x2∈(0,+∞),使得f(x1)=g(x2)成立,則n-m的最大值為4.

查看答案和解析>>

同步練習(xí)冊答案