分析 (I)求出函數(shù)f(x)的解析式,并利用輔助角(和差角)公式化為正弦型函數(shù),進而可得函數(shù)g(x)的解析式,進而可得函數(shù)g(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{6}$]上的最大值,及最大值點;
(Ⅱ)根據(jù)f($\frac{A}{2}$-$\frac{π}{12}$)+g($\frac{π}{12}$+$\frac{A}{2}$)=-$\sqrt{3}$,b+c=7,bc=8,解三角形,可得邊a的長.
解答 解:(Ⅰ)∵向量$\overrightarrow m$=(sin x,$\sqrt{3}$sinx),$\overrightarrow n$=(sinx,-cosx),
∴函數(shù)$f(x)=\overrightarrow m•\overrightarrow n$=sin2x-$\sqrt{3}$sinxcosx=$\frac{1}{2}$-$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x=$\frac{1}{2}$-sin(2x+$\frac{π}{6}$),
∴g(x)=-f(-x)=-[$\frac{1}{2}$-sin(-2x+$\frac{π}{6}$)]=sin(2x+$\frac{5π}{6}$)-$\frac{1}{2}$,
當x∈[-$\frac{π}{4}$,$\frac{π}{6}$]時,2x+$\frac{5π}{6}$∈[$\frac{π}{3}$,$\frac{7π}{6}$],
故當2x+$\frac{5π}{6}$=$\frac{π}{2}$,即x=-$\frac{π}{6}$時,函數(shù)取最大值$\frac{1}{2}$;
(Ⅱ)∵f($\frac{A}{2}$-$\frac{π}{12}$)+g($\frac{π}{12}$+$\frac{A}{2}$)
=$\frac{1}{2}$-sin[2($\frac{A}{2}$-$\frac{π}{12}$)+$\frac{π}{6}$)]+sin[2($\frac{π}{12}$+$\frac{A}{2}$)+$\frac{5π}{6}$]-$\frac{1}{2}$
=-2sinA
=-$\sqrt{3}$,
∴sinA=$\frac{\sqrt{3}}{2}$,
則cosA=$±\frac{1}{2}$,
∵b+c=7,bc=8,
∴當cosA=$-\frac{1}{2}$時,a2=b2+c2+bc=(b+c)2-bc=41,此時a=$\sqrt{41}$,
當cosA=$\frac{1}{2}$時,a2=b2+c2-bc=(b+c)2-3bc=25,此時a=5.
點評 本題考查的知識點是三角函數(shù)的恒等變量,三角函數(shù)的圖象和性質(zhì),平面向量的數(shù)量積運算,難度中檔.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{2}$-$\frac{3}{2}$i | B. | $\frac{3}{2}$-$\frac{1}{2}$i | C. | $\frac{1}{2}+\frac{3}{2}$i | D. | $\frac{1}{2}$-$\frac{3}{2}$i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 有最小值-3,最大值3 | B. | 有最小值-3,無最大值 | ||
C. | 最小值-3,有最大值$\frac{3}{2}$ | D. | 無最小值,有最大值$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等腰直角 | B. | 等腰 | C. | 直角 | D. | 等邊 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | $-\frac{1}{2}$ | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com