【題目】已知公差不為0的等差數(shù)列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數(shù)列.
(1)求數(shù)列{an}通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn= ,求適合方程b1b2+b2b3+…+bnbn+1= 的正整數(shù)n的值.
【答案】
(1)解:設(shè)公差為為d,a1=2,且a2+1,a4+1,a8+1成等比數(shù)列,
∴(a4+1)2=(a2+1)(a8+1),
∴(3d+3)2=(3+d)(3+7d),
解得d=3,
∴an=a1+(n﹣1)d=2+3(n﹣1)=3n﹣1
(2)解:∵數(shù)列{bn}滿足bn= ,
∴bn= ,
∴bnbn+1= =3( ﹣ )
∴b1b2+b2b3+…+bnbn+1=3( ﹣ + ﹣ ++ ﹣ )=3( ﹣ )= ,
即 = ,
解得n=10,
故正整數(shù)n的值為10
【解析】(1)由a2+1,a4+1,a8+1成等比數(shù)列,建立關(guān)于d的方程,解出d,即可求數(shù)列{an}的通項(xiàng)公式;(2)表示出bn , 利用裂項(xiàng)相消法求出b1b2+b2b3+…+bnbn+1 , 建立關(guān)于n的方程,求解即可
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sin(x+ )cosx.
(1)若0≤x≤ ,求函數(shù)f(x)的值域;
(2)設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若A為銳角且f(A)= ,b=2,c=3,求cos(A﹣B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A= .
(1)求A∩B;
(2)若f(x)=log2x﹣ ,x∈A∩B求函數(shù)f(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分12分) 已知橢圓的左焦點(diǎn)及點(diǎn),原點(diǎn)到直線的距離為.
(1)求橢圓的離心率;
(2)若點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在圓上,求橢圓的方程及點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著電子商務(wù)的發(fā)展, 人們的購(gòu)物習(xí)慣正在改變, 基本上所有的需求都可以通過(guò)網(wǎng)絡(luò)購(gòu)物解決. 小韓是位網(wǎng)購(gòu)達(dá)人, 每次購(gòu)買商品成功后都會(huì)對(duì)電商的商品和服務(wù)進(jìn)行評(píng)價(jià). 現(xiàn)對(duì)其近年的200次成功交易進(jìn)行評(píng)價(jià)統(tǒng)計(jì), 統(tǒng)計(jì)結(jié)果如下表所示.
對(duì)服務(wù)好評(píng) | 對(duì)服務(wù)不滿意 | 合計(jì) | |
對(duì)商品好評(píng) | 80 | 40 | 120 |
對(duì)商品不滿意 | 70 | 10 | 80 |
合計(jì) | 150 | 50 | 200 |
(1) 是否有的把握認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)? 請(qǐng)說(shuō)明理由;
(2) 若針對(duì)商品的好評(píng)率, 采用分層抽樣的方式從這200次交易中取出5次交易, 并從中選擇兩次交易進(jìn)行觀察, 求只有一次好評(píng)的概率.
(,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓方程()的離心率為, 短軸長(zhǎng)為2.
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 直線()與軸的交點(diǎn)為(點(diǎn)不在橢圓外), 且與橢圓交于兩個(gè)不同的點(diǎn). 若線段的中垂線恰好經(jīng)過(guò)橢圓的下端點(diǎn), 且與線段交于點(diǎn), 求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽曾創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明.如圖所示的“勾股圓方圖”中,四個(gè)全等的直角三角形與中間的小正方形拼成一個(gè)大正方形,其中一個(gè)直角三角形中較小的銳角滿足,現(xiàn)向大正方形內(nèi)隨機(jī)投擲一枚飛鏢,則飛鏢落在小正方形內(nèi)的概率是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)、兩種元件,其質(zhì)量按測(cè)試指標(biāo)劃分為:大于或等于為正品,小于為次品.現(xiàn)從一批產(chǎn)品中隨機(jī)抽取這兩種元件各件進(jìn)行檢測(cè),檢測(cè)結(jié)果記錄如下:
B |
由于表格被污損,數(shù)據(jù)、看不清,統(tǒng)計(jì)員只記得,且、兩種元件的檢測(cè)數(shù)據(jù)的平均值相等,方差也相等.
(1)求表格中與的值;
(2)從被檢測(cè)的件種元件中任取件,求件都為正品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費(fèi)相應(yīng)增加.現(xiàn)對(duì)一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購(gòu)入使用之日起,前五年平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用大致如下表:
年份(年) | 1 | 2 | 3 | 4 | 5 |
維護(hù)費(fèi)(萬(wàn)元) | 1.1 | 1.5 | 1.8 | 2.2 | 2.4 |
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)若該設(shè)備的價(jià)格是每臺(tái)5萬(wàn)元,甲認(rèn)為應(yīng)該使用滿五年換一次設(shè)備,而乙則認(rèn)為應(yīng)該使用滿十年換一次設(shè)備,你認(rèn)為甲和乙誰(shuí)更有道理?并說(shuō)明理由.
(參考公式: .)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com