【題目】三國時期吳國的數(shù)學家趙爽曾創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結合的方法給出了勾股定理的詳細證明.如圖所示的“勾股圓方圖”中,四個全等的直角三角形與中間的小正方形拼成一個大正方形,其中一個直角三角形中較小的銳角滿足,現(xiàn)向大正方形內(nèi)隨機投擲一枚飛鏢,則飛鏢落在小正方形內(nèi)的概率是
A. B. C. D.
科目:高中數(shù)學 來源: 題型:
【題目】等差數(shù)列{an}的公差d≠0滿足成等比數(shù)列,若=1,Sn是{}的前n項和,則的最小值為________.
【答案】4
【解析】
成等比數(shù)列,=1,可得:= ,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入利用分離常數(shù)法化簡后,利用基本不等式求出式子的最小值.
∵成等比數(shù)列,a1=1,
∴= ,
∴(1+2d)2=1+12d,d≠0,
解得d=2.
∴an=1+2(n﹣1)=2n﹣1.
Sn=n+×2=n2.
∴==n+1+﹣2≥2﹣2=4,
當且僅當n+1=時取等號,此時n=2,且取到最小值4,
故答案為:4.
【點睛】
本題考查了等差數(shù)列的通項公式、前n項和公式,等比中項的性質(zhì),基本不等式求最值,在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應用,否則會出現(xiàn)錯誤.
【題型】填空題
【結束】
17
【題目】設是公比為正數(shù)的等比數(shù)列,,
(1)求的通項公式;
(2)設是首項為1,公差為2的等差數(shù)列,求數(shù)列的前項和
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知公差不為0的等差數(shù)列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數(shù)列.
(1)求數(shù)列{an}通項公式;
(2)設數(shù)列{bn}滿足bn= ,求適合方程b1b2+b2b3+…+bnbn+1= 的正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設為彼此不重合的三個平面,為直線,給出下列結論:
①若 ,則 ②若,且 則
③若直線與平面內(nèi)的無數(shù)條直線垂直,則
④若內(nèi)存在不共線的三點到的距離相等,則
上面結論中,正確的序號為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC是邊長為4的正三角形,點P1 , P2 , P3 , 四等分線段BC(如圖所示)
(1)P為邊BC上一動點,求 的取值范圍?
(2)Q為線段AP1上一點,若 =m + ,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,極點為O,點A的極坐標為(2, ),以OA為斜邊作等腰直角三角形OAB(其中O,A,B按逆時針方向分布)
(1)求點B的極坐標;
(2)求三角形外接圓的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市為迎接“國家義務教育均衡發(fā)展”綜合評估,市教育行政部門在全市范圍內(nèi)隨機抽取了所學校,并組織專家對兩個必檢指標進行考核評分.其中分別表示“學校的基礎設施建設”和“學校的師資力量”兩項指標,根據(jù)評分將每項指標劃分為(優(yōu)秀)、(良好)、(及格)三個等級,調(diào)查結果如表所示.例如:表中“學校的基礎設施建設”指標為等級的共有所學校.已知兩項指標均為等級的概率為0.21.
(1)在該樣本中,若“學校的基礎設施建設”優(yōu)秀率是0.4,請?zhí)顚懴旅?/span>列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為“學校的基礎設施建設”和“學校的師資力量”有關;
師資力量(優(yōu)秀) | 師資力量(非優(yōu)秀) | 合計 | |
基礎設施建設(優(yōu)秀) | |||
基礎設施建設(非優(yōu)秀) | |||
合計 |
(2)在該樣本的“學校的師資力量”為等級的學校中,若,記隨機變量,求的分布列和數(shù)學期望.
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com