函數(shù)f(x)=2x|log
1
2
x
|-1的零點個數(shù)為
 
考點:根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質(zhì)及應用
分析:由f(x)=0得|log
1
2
x
|=2-x,作出兩個函數(shù)的圖象,利用數(shù)形結合即可得到結論.
解答: 解:∵f(x)=2x|log
1
2
x
|-1,
∴由f(x)=0得|log
1
2
x
|=2-x,作出y=|log
1
2
x
|,y=2-x的圖象,
由圖象可知兩個圖象的交點個數(shù)為2個,
故答案為:2
點評:本題主要考查根的個數(shù)的判斷,利用數(shù)形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過點P(2,0)作直線l交橢圓
x2
2
+y2=1于不同兩點A,B,設G為線段AB的中點,直線OG交于C,D.
(1)若點G的橫坐標為
2
3
,求l的方程;
(2)設△ABD與△ABC的面積分別為S1,S2,求|S1-S2|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b,c是空間三條直線,α,β是空間兩個平面,則下列命題中,命題不正確的是( 。
A、當c⊥α時,若α∥β,則c⊥β
B、當b?α時,若α⊥β,則b⊥β
C、當b?α,a?α且c是a在α內(nèi)的射影時,若a⊥b,則b⊥c
D、當b?α且c?α時,若b∥c,則c∥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

y=|x2-2x-3|與y=k有4個不同的交點,則k的范圍( 。
A、(-4,0)
B、[0,4]
C、[0,4)
D、(0,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若方程2|x|=9-x2 在區(qū)間(k,k+1)(k∈Z)上有解,則所有滿足條件的實數(shù)k值的和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,已知S4=48,S8=60,則S12=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1}.
(Ⅰ)若A⊆B,求實數(shù)m的取值范圍;
(Ⅱ)若B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,點(n,
Sn
n
)(n∈N*)均在函數(shù)y=
1
2
x+
1
2
的圖象上,則a2014=( 。
A、2014B、2013
C、1012D、1011

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a=30.5,b=ln2,c=logπsin
π
12
,則(  )
A、b>a>c
B、a>b>c
C、c>a>b
D、b>c>a

查看答案和解析>>

同步練習冊答案