【題目】已知橢圓經(jīng)過點,,C的左、右焦點,過的直線lC交于A,B兩點,且的周長為

1)求C的方程;

2)若,求l的方程.

【答案】1;(2

【解析】

1)由題意可得關(guān)于a,b,c的方程組,求解a,b,c的值,即可得到橢圓的方程;

2)當軸時,AB的坐標為,,易知,不滿足題意;當ABx軸不垂直時,設(shè)直線l的方程為,聯(lián)立橢圓方程得到根與系數(shù)的關(guān)系,將表示,解方程即可.

1)依題意,,故

將點代入橢圓方程得,,所以,

所以C的方程為

2)由(1)知,的坐標分別為

設(shè),,

①當軸時,A,B的坐標為,,則

,不滿足題意.

②當ABx軸不垂直時,設(shè)直線l的方程為

代入得:

所以,

,

因為,,

所以

因為

所以

依題意得:,

解得,即

綜上,直線l的方程為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2020年春節(jié)突如其來的新型冠狀病毒肺炎在湖北爆發(fā),一方有難八方支援,全國各地的白衣天使走上戰(zhàn)場的第一線,某醫(yī)院抽調(diào)甲、乙兩名醫(yī)生,抽調(diào)、、三名護士支援武漢第一醫(yī)院與第二醫(yī)院,參加武漢疫情狙擊戰(zhàn)其中選一名護士與一名醫(yī)生去第一醫(yī)院,其它都在第二醫(yī)院工作,則醫(yī)生甲和護士被選在第一醫(yī)院工作的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數(shù)學家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學界的震動,在1859年,德國數(shù)學家黎曼向科學院提交了題目為《論小于某值的素數(shù)個數(shù)》的論文并提出了一個命題,也就是著名的黎曼猜想.在此之前,著名數(shù)學家歐拉也曾研究過這個問題,并得到小于數(shù)字的素數(shù)個數(shù)大約可以表示為的結(jié)論(素數(shù)即質(zhì)數(shù),).根據(jù)歐拉得出的結(jié)論,如下流程圖中若輸入的值為,則輸出的值應(yīng)屬于區(qū)間( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由四棱柱截去三棱錐后得到的幾何體如圖所示,四邊形是邊長為的正方形,的交點,的中點,平面

)證明:平面;

)若直線與平面所成的角為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是橢圓上一動點,點分別是左、右兩個焦點.面積的最大值為,且橢圓的長軸長為.

1)求橢圓的標準方程;

2)若點在橢圓上,已知兩點,,且以為直徑的圓經(jīng)過坐標原點.求證:的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為解決城市的擁堵問題,某城市準備對現(xiàn)有的一條穿城公路MON進行分流,已知穿城公路MON自西向東到達城市中心點O后轉(zhuǎn)向東北方向(即).現(xiàn)準備修建一條城市高架道路L,LMO上設(shè)一出入口A,在ON上設(shè)一出入口B.假設(shè)高架道路LAB部分為直線段,且要求市中心OAB的距離為10km

1)求兩站點AB之間距離的最小值;

2)公路MO段上距離市中心O30km處有一古建筑群C為保護古建筑群,設(shè)立一個以C為圓心,5km為半徑的圓形保護區(qū).則如何在古建筑群C和市中心O之間設(shè)計出入口A,才能使高架道路L及其延伸段不經(jīng)過保護區(qū)(不包括臨界狀態(tài))?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體,過對角線作平面交棱于點,交棱于點,下列正確的是(

A.平面分正方體所得兩部分的體積相等;

B.四邊形一定是平行四邊形;

C.平面與平面不可能垂直;

D.四邊形的面積有最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,求曲線在點處的切線方程;

(Ⅱ)若有兩個極值點,求實數(shù)a的取值范圍;

(Ⅲ)若,求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),若以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的普通方程和曲線的直角坐標方程;

2)若點P的坐標為,且曲線與曲線交于C,D兩點,求的值.

查看答案和解析>>

同步練習冊答案