【題目】已知橢圓C: =1(a>b>0)的左、右焦點(diǎn)為F1、F2 , 離心率為e.直線l:y=ex+a與x軸、y軸分別交于點(diǎn)A、B,M是直線l與橢圓C的一個(gè)公共點(diǎn),P是點(diǎn)F1關(guān)于直線l的對(duì)稱(chēng)點(diǎn),設(shè)
(1)證明:λ=1﹣e2
(2)若λ= ,△MF1F2的周長(zhǎng)為6;寫(xiě)出橢圓C的方程;
(3)確定λ的值,使得△PF1F2是等腰三角形.

【答案】
(1)證明:因?yàn)锳、B分別是直線l:y=ex+a與x軸、y軸的交點(diǎn),

所以A、B的坐標(biāo)分別是(﹣ ,0),(0,a).

這里c=

所以點(diǎn)M的坐標(biāo)是(﹣c, ).

得(﹣c+ , )=λ( ,a).

,解得λ=1﹣e2


(2)解:當(dāng)λ= 時(shí),e= ,所以a=2c.

由△PF1F2的周長(zhǎng)為6,得2a+2c=6.

所以a=2,c=1,b2=a2﹣c2=3.

橢圓方程為


(3)解:因?yàn)镻F1⊥l,所以∠PF1F2=90°+∠BAF1為鈍角,要使△PF1F2為等腰三角形,必有|PF1|=|F1F2|,

|PF1|=c.

設(shè)點(diǎn)F1到l的距離為d,由 |PF1|=d= = =c.

=e.

所以e2= ,于是λ=1﹣e2=

即當(dāng)λ= 時(shí),△PF1F2為等腰三角形


【解析】(1)先根據(jù)A、B分別是直線l:y=ex+a與x軸、y軸的交點(diǎn)表示出A、B的坐標(biāo),然后聯(lián)立直線方程與橢圓方程可得到交點(diǎn)M的坐標(biāo),再根據(jù) 得(﹣c+ , )=λ( ,a)根據(jù)對(duì)應(yīng)坐標(biāo)相等可得到 ,從而得到λ=1﹣e2 , 等證.(2)當(dāng)λ= 時(shí)可得到e的值,進(jìn)而得到a,c的關(guān)系,再由△PF1F2的周長(zhǎng)為6可得到2a+2c=6,進(jìn)而可求出a,c的值,從而可得到b的值,確定橢圓方程.(3)根據(jù)PF1⊥l,可得到∠PF1F2=90°+∠BAF1為鈍角,進(jìn)而要使得△PF1F2為等腰三角形,必有|PF1|=|F1F2|,即 |PF1|=c成立,然后設(shè)點(diǎn)F1到l的距離為d,根據(jù) |PF1|=d= =c可得到 =e,進(jìn)而可得到e的值,求出λ的值.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用橢圓的標(biāo)準(zhǔn)方程,掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是邊長(zhǎng)為1的正六邊形ABCDEF的邊上的一個(gè)動(dòng)點(diǎn),設(shè) =x +y ,則x+y的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=f(x)的圖象過(guò)坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)f′(x)=6x﹣2,數(shù)列{an}前n項(xiàng)和為Sn , 點(diǎn)(n,Sn)(n∈N*)均在y=f(x)的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè) ,Tn是數(shù)列{bn}的前n項(xiàng)和,求當(dāng) 對(duì)所有n∈N*都成立m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

(1)若曲線在公共點(diǎn)處有相同的切線,求實(shí)數(shù)的值;

2)當(dāng)時(shí),若曲線在公共點(diǎn)處有相同的切線,求證:點(diǎn)唯一;

3)若, ,且曲線總存在公切線,求:正實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E,F(xiàn)分別是AB,PB的中點(diǎn)

(1)求證:EF⊥CD;
(2)在平面PAD內(nèi)求一點(diǎn)G,使GF⊥平面PCB,并證明你的結(jié)論;
(3)求DB與平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)當(dāng)時(shí),求函數(shù)的最小值;

2)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

3)是否存在實(shí)數(shù),對(duì)任意的, ,且,有恒成立,若存在求出的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列{an}中,已知a1+a2=2,a2+a3=10,求通項(xiàng)公式an及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)事件A表示“關(guān)于x的一元二次方程x2+ax+b2=0有實(shí)根”,其中a,b為實(shí)常數(shù). (Ⅰ)若a為區(qū)間[0,5]上的整數(shù)值隨機(jī)數(shù),b為區(qū)間[0,2]上的整數(shù)值隨機(jī)數(shù),求事件A發(fā)生的概率;
(Ⅱ)若a為區(qū)間[0,5]上的均勻隨機(jī)數(shù),b為區(qū)間[0,2]上的均勻隨機(jī)數(shù),求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足f(x)+f(x+5)=16,當(dāng)x∈(﹣1,4]時(shí),f(x)=x2﹣2x , 則函數(shù)f(x)在區(qū)間[0,2016]上的零點(diǎn)個(gè)數(shù)是

查看答案和解析>>

同步練習(xí)冊(cè)答案