【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)存在兩個(gè)零點(diǎn).
①實(shí)數(shù)的取值范圍;
②證明:.
【答案】(1);(2)①;②詳見解析.
【解析】
(1)求得的導(dǎo)數(shù),可得切線的斜率,由點(diǎn)斜式方程可得切線方程;
(2)①求得的導(dǎo)數(shù),討論的符號(hào),求得單調(diào)性,結(jié)合函數(shù)的零點(diǎn),可得最小值小于,解不等式可得的范圍;
②由題意可得,作差可得,運(yùn)用分析法證明,轉(zhuǎn)化為證明,設(shè),可得,設(shè),求得導(dǎo)數(shù),判斷單調(diào)性,即可得證.
(1)函數(shù)的導(dǎo)函數(shù)為,
可得在處切線的斜率為,
則切線方程為,即.
(2)
①函數(shù)的導(dǎo)函數(shù)為,
若,則在上遞增,不成立;
當(dāng)時(shí),在時(shí)遞增,在時(shí)遞減,
所以在處取得極小值,且為最小值,
由題意可得,解得.
②依題意可得,
兩式相減并化簡得,要證,
即證,
即為,即為,即為,
由可得,設(shè),
可得,
設(shè),
,
則在遞增,而,所以,
所以,
則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)全球化、信息化的發(fā)展,企業(yè)之間的競爭從資源的爭奪轉(zhuǎn)向人才的競爭,吸引、留住培養(yǎng)和用好人才成為人力資源管理的戰(zhàn)略目標(biāo)和緊迫任務(wù),在此背景下,某信息網(wǎng)站在15個(gè)城市中對(duì)剛畢業(yè)的大學(xué)生的月平均收入薪資和月平均期望薪資做了調(diào)查,數(shù)據(jù)如下圖所示.
(Ⅰ)若某大學(xué)畢業(yè)生從這15座城市中隨機(jī)選擇一座城市就業(yè),求該生選中月平均收入薪資高于8500元的城市的概率;
(Ⅱ)若從月平均收入薪資與月平均期望薪資之差高于1100元的城市中隨機(jī)選擇2座城市,求這2座城市的月平均期望薪資都低于8500元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】推進(jìn)垃圾分類處理,是落實(shí)綠色發(fā)展理念的必然選擇,也是打贏污染防治攻堅(jiān)戰(zhàn)的重要環(huán)節(jié).為了解居民對(duì)垃圾分類的了解程度,某社區(qū)居委會(huì)隨機(jī)抽取1000名社區(qū)居民參與問卷測試,并將問卷得分繪制頻率分布表如下:
得分 | |||||||
男性人數(shù) | 40 | 90 | 120 | 130 | 110 | 60 | 30 |
女性人數(shù) | 20 | 50 | 80 | 110 | 100 | 40 | 20 |
(1)從該社區(qū)隨機(jī)抽取一名居民參與問卷測試,試估計(jì)其得分不低于60分的概率;
(2)將居民對(duì)垃圾分類的了解程度分為“比較了解“(得分不低于60分)和“不太了解”(得分低于60分)兩類,完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為“居民對(duì)垃圾分類的了解程度”與“性別”有關(guān)?
不太了解 | 比較了解 | |
男性 | ||
女性 |
(3)從參與問卷測試且得分不低于80分的居民中,按照性別進(jìn)行分層抽樣,共抽取10人,連同名男性調(diào)查員一起組成3個(gè)環(huán)保宜傳隊(duì).若從這中隨機(jī)抽取3人作為隊(duì)長,且男性隊(duì)長人數(shù)占的期望不小于2.求的最小值.
附:
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點(diǎn),是的中點(diǎn).分別沿,將四邊形和折起,使,重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為,的中點(diǎn).
(1)證明:平面.
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列滿足:.且是,的等差中項(xiàng).又?jǐn)?shù)列滿足:,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,且數(shù)列為等比數(shù)列,求的值;
(3)若,且為數(shù)列的最小項(xiàng),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有3名醫(yī)生,5名護(hù)士、2名麻醉師.
(1)從中選派1名去參加外出學(xué)習(xí),有多少種不同的選法?
(2)從這些人中選出1名醫(yī)生、1名護(hù)士和1名麻醉師組成1個(gè)醫(yī)療小組,有多少種不同的選法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)參加一項(xiàng)射擊比賽游戲,其中任何一人每射擊一次擊中目標(biāo)得2分,未擊中目標(biāo)得0分.若甲、乙兩人射擊的命中率分別為和,且甲、乙兩人各射擊一次得分之和為2的概率為.假設(shè)甲、乙兩人射擊互不影響,則值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級(jí)三個(gè)班共有學(xué)生120名,這三個(gè)班的男女生人數(shù)如下表所示,已知在全年級(jí)中隨機(jī)抽取1名學(xué)生,抽到二班女生的概率是0.2,則_________.現(xiàn)用分層抽樣的方法在全年級(jí)抽取30名學(xué)生,則應(yīng)在三班抽取的學(xué)生人數(shù)為________.
一班 | 二班 | 三班 | |
女生人數(shù) | 20 | ||
男生人數(shù) | 20 | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣x+1,g(x)=ex﹣ax,a∈R.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若g(x)≥1在R上恒成立,求a的值;
(Ⅲ)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com