【題目】甲、乙兩名同學參加一項射擊比賽游戲,其中任何一人每射擊一次擊中目標得2分,未擊中目標得0分.若甲、乙兩人射擊的命中率分別為和,且甲、乙兩人各射擊一次得分之和為2的概率為.假設甲、乙兩人射擊互不影響,則值為( )
A. B. C. D.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的短軸長為,過點,的直線傾斜角為.
(1)求橢圓的方程;
(2)是否存在過點且斜率為的直線,使直線交橢圓于兩點,以為直徑的圓過點?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)當時,求函數(shù)在點處的切線方程;
(2)若函數(shù)存在兩個零點.
①實數(shù)的取值范圍;
②證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,過點的直線與有兩個不同的交點,線段的中點為,為坐標原點,直線與直線分別交直線于點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)求線段的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內(nèi)報名人數(shù)便突破60萬,其中青年學生約有50萬人.現(xiàn)從這50萬青年學生志愿者中,按男女分層抽樣隨機選取20人進行英語水平測試,所得成績(單位:分)統(tǒng)計結果用莖葉圖記錄如下:
(Ⅰ)試估計在這50萬青年學生志愿者中,英語測試成績在80分以上的女生人數(shù);
(Ⅱ)從選出的8名男生中隨機抽取2人,記其中測試成績在70分以上的人數(shù)為X,求的分布列和數(shù)學期望;
(Ⅲ)為便于聯(lián)絡,現(xiàn)將所有的青年學生志愿者隨機分成若干組(每組人數(shù)不少于5000),并在每組中隨機選取個人作為聯(lián)絡員,要求每組的聯(lián)絡員中至少有1人的英語測試成績在70分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓與圓:外切且與軸相切.
(1)求圓心的軌跡的方程;
(2)過作斜率為的直線交曲線于,兩點,
①若,求直線的方程;
②過,兩點分別作曲線的切線,,求證:,的交點恒在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測數(shù)據(jù),結果統(tǒng)計如表:
AQI | ||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 重度污染 |
天數(shù) | 6 | 14 | 18 | 27 | 25 | 10 |
(1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;
(2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟損失y(單位:元)與空氣質(zhì)量指數(shù)x的關系式為,假設該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質(zhì)量對應的概率以表中100天的空氣質(zhì)量的頻率代替.
(i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟損失為X元,求X的分布列;
(ii)試問該企業(yè)7月、8月、9月這三個月因氣質(zhì)量造成的經(jīng)濟損失總額的數(shù)學期望是否會超過2.88萬元?說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com