【題目】某商場(chǎng)為改進(jìn)服務(wù)質(zhì)量,在進(jìn)場(chǎng)購(gòu)物的顧客中隨機(jī)抽取了人進(jìn)行問(wèn)卷調(diào)查.調(diào)查后,就顧客“購(gòu)物體驗(yàn)”的滿意度統(tǒng)計(jì)如下:

滿意

不滿意

是否有的把握認(rèn)為顧客購(gòu)物體驗(yàn)的滿意度與性別有關(guān)?

若在購(gòu)物體驗(yàn)滿意的問(wèn)卷顧客中按照性別分層抽取了人發(fā)放價(jià)值元的購(gòu)物券.若在獲得了元購(gòu)物券的人中隨機(jī)抽取人贈(zèng)其紀(jì)念品,求獲得紀(jì)念品的人中僅有人是女顧客的概率.

附表及公式:

【答案】的把握認(rèn)為顧客購(gòu)物體驗(yàn)的滿意度與性別有關(guān);.

【解析】

由題得,根據(jù)數(shù)據(jù)判斷出顧客購(gòu)物體驗(yàn)的滿意度與性別有關(guān);

獲得了元購(gòu)物券的人中男顧客有人,記為,;女顧客有人,記為,,.從中隨機(jī)抽取人,所有基本事件有個(gè),其中僅有1人是女顧客的基本事件有個(gè),進(jìn)而求出獲得紀(jì)念品的人中僅有人是女顧客的概率.

解析:由題得

所以,有的把握認(rèn)為顧客購(gòu)物體驗(yàn)的滿意度與性別有關(guān).

獲得了元購(gòu)物券的人中男顧客有人,記為;女顧客有人,記為,

從中隨機(jī)抽取人,所有基本事件有:,,,,,,,,,,,,共個(gè).

其中僅有1人是女顧客的基本事件有:,,,,,共個(gè).

所以獲得紀(jì)念品的人中僅有人是女顧客的概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為給定的大于2的正整數(shù),集合,已知數(shù)列,…,滿足條件:

①當(dāng)時(shí),

②當(dāng)時(shí),.

如果對(duì)于,有,則稱為數(shù)列的一個(gè)逆序?qū)?/span>.記數(shù)列的所有逆序?qū)Φ膫(gè)數(shù)為.

1)若,寫(xiě)出所有可能的數(shù)列

2)若,求數(shù)列的個(gè)數(shù);

3)對(duì)于滿足條件的一切數(shù)列,求所有的算術(shù)平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中有如下問(wèn)題:今有蒲生一日,長(zhǎng)三尺,莞生一日,長(zhǎng)1尺.蒲生日自半,莞生日自倍.問(wèn)幾何日而長(zhǎng)等?意思是:今有蒲第一天長(zhǎng)高3尺,莞第一天長(zhǎng)高1尺,以后蒲每天長(zhǎng)高前一天的一半,莞每天長(zhǎng)高前一天的2倍.若蒲、莞長(zhǎng)度相等,則所需時(shí)間為()

(結(jié)果精確到0.1.參考數(shù)據(jù):lg20.3010,lg30.4771.)

A.2.6B.2.2C.2.4D.2.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市在精準(zhǔn)扶貧和生態(tài)文明建設(shè)的專項(xiàng)工作中,為改善農(nóng)村生態(tài)環(huán)境,建設(shè)美麗鄉(xiāng)村,開(kāi)展農(nóng)村生活用水排污管道村村通”.已知排污管道外徑為1米,當(dāng)兩條管道并行經(jīng)過(guò)一塊農(nóng)田時(shí),如圖,要求兩根管道最近距離不小于0.25米,埋沒(méi)的最小覆土厚度(路面至管頂)不低于0.5.埋設(shè)管道前先挖掘一條橫截面為等腰梯形的溝渠,且管道所在的兩圓分別與兩腰相切.設(shè).

1)為了減少農(nóng)田的損毀,則當(dāng)為何值時(shí),挖掘的土方量最少?

2)水管用吊車(chē)放入渠底前需了解吊繩的長(zhǎng)度,在(1)的條件下計(jì)算長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的焦距是,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)3倍,任作斜率為的直線與橢圓交于兩點(diǎn)(如圖所示),且點(diǎn)在直線的左上方.

1)求橢圓的方程;

2)若,求的面積;

3)證明:的內(nèi)切圓的圓心在一條定直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠有兩臺(tái)不同機(jī)器生產(chǎn)同一種產(chǎn)品各10萬(wàn)件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取20件,進(jìn)行品質(zhì)鑒定,鑒定成績(jī)的莖葉圖如圖所示:

該產(chǎn)品的質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)規(guī)定:鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為優(yōu)秀;鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為良好;鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.

1)完成下列列聯(lián)表,以產(chǎn)品等級(jí)是否達(dá)到良好以上(含良好)為判斷依據(jù),判斷能不能在誤差不超過(guò)0.05的情況下,認(rèn)為機(jī)器生產(chǎn)的產(chǎn)品比機(jī)器生產(chǎn)的產(chǎn)品好;

生產(chǎn)的產(chǎn)品

生產(chǎn)的產(chǎn)品

合計(jì)

良好以上(含良好)

合格

合計(jì)

2)根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,從兩臺(tái)不同機(jī)器生產(chǎn)的產(chǎn)品中各隨機(jī)抽取2件,求4件產(chǎn)品中機(jī)器生產(chǎn)的優(yōu)等品的數(shù)量多于機(jī)器生產(chǎn)的優(yōu)等品的數(shù)量的概率;

3)已知優(yōu)秀等級(jí)產(chǎn)品的利潤(rùn)為12/件,良好等級(jí)產(chǎn)品的利潤(rùn)為10/件,合格等級(jí)產(chǎn)品的利潤(rùn)為5/件,機(jī)器每生產(chǎn)10萬(wàn)件的成本為20萬(wàn)元,機(jī)器每生產(chǎn)10萬(wàn)件的成本為30萬(wàn)元;該工廠決定:按樣本數(shù)據(jù)測(cè)算,兩種機(jī)器分別生產(chǎn)10萬(wàn)件產(chǎn)品,若收益之差達(dá)到5萬(wàn)元以上,則淘汰收益低的機(jī)器,若收益之差不超過(guò)5萬(wàn)元,則仍然保留原來(lái)的兩臺(tái)機(jī)器.你認(rèn)為該工廠會(huì)仍然保留原來(lái)的兩臺(tái)機(jī)器嗎?

附:獨(dú)立性檢驗(yàn)計(jì)算公式:.

臨界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】樹(shù)立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來(lái)越深入人心,已形成了全民自覺(jué)參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,調(diào)查數(shù)據(jù)表明,環(huán)境治理和保護(hù)問(wèn)題仍是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問(wèn)題的約占.現(xiàn)從參與關(guān)注生態(tài)文明建設(shè)的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)求出的值;

(2)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再?gòu)倪@5人中隨機(jī)抽取3人進(jìn)行問(wèn)卷調(diào)查,求第2組恰好抽到2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)若點(diǎn)在曲線上,點(diǎn)在曲線上,求的最小值及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論上的零點(diǎn)個(gè)數(shù);

(2)當(dāng)時(shí),若存在,使,求實(shí)數(shù)的取值范圍.(為自然對(duì)數(shù)的底數(shù),其值為2.71828……)

查看答案和解析>>

同步練習(xí)冊(cè)答案