分析 求得雙曲線的焦點(diǎn)坐標(biāo),設(shè)雙曲線上一點(diǎn)P(x,y),若雙曲線上一點(diǎn)P使得∠F1PF2為鈍角,則$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$<0,由此列不等式,注意運(yùn)用P滿足雙曲線的方程和雙曲線的范圍,即可解得P點(diǎn)橫坐標(biāo)的取值范圍.
解答 解:雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{4}$=1的焦點(diǎn)為F1(-2$\sqrt{2}$,0),F(xiàn)2(2$\sqrt{2}$,0),
設(shè)P(x,y),
可得$\overrightarrow{P{F}_{1}}$=(-x-2$\sqrt{2}$,-y),$\overrightarrow{P{F}_{2}}$=(2$\sqrt{2}$-x,-y),
∵∠F1PF2為鈍角,
∴$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$<0,
∴cos∠F1PF2<0,
∴(-x-2$\sqrt{2}$,-y)•(2$\sqrt{2}$-x,-y)<0,
即x2+y2-8<0,
又x2-y2=4,
∴y2=x2-4,即有x2<6,
解得-$\sqrt{6}$<x<$\sqrt{6}$,
又x>2或x<-2,
可得x∈(-$\sqrt{6}$,-2)∪(2,$\sqrt{6}$).
故答案為:(-$\sqrt{6}$,-2)∪(2,$\sqrt{6}$).
點(diǎn)評(píng) 本題考查雙曲線的標(biāo)準(zhǔn)方程及向量知識(shí),解題時(shí)要能熟練運(yùn)用雙曲線的方程和范圍,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com