20.若曲線C:mx2+(2-m)y2=1是焦點在x軸上的雙曲線,則m的取值范圍為(2,+∞).

分析 將雙曲線的方程化為標準方程,由題意可得m>0且m-2>0,解不等式即可得到所求范圍.

解答 解:曲線C:mx2+(2-m)y2=1是焦點在x軸上的雙曲線,
可得$\frac{{x}^{2}}{\frac{1}{m}}$-$\frac{{y}^{2}}{\frac{1}{m-2}}$=1,即有m>0,且m-2>0,
解得m>2.
故答案為:(2,+∞).

點評 本題考查雙曲線的方程和性質(zhì),注意化為標準方程,考查運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

8.解方程${(\sqrt{4+2\sqrt{3}})}^{x}$+${(\sqrt{4-2\sqrt{3}})}^{x}$=8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.求下列各極限:
(1)$\underset{lim}{x→2}$$\sqrt{3{x}^{2}-2x+1}$;
(2)$\underset{lim}{x→1}$$\frac{2x-1}{x+2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.雙曲線$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{9}$=1上的點P到點(5,0)的距離為8.5,則點P到左準線的距離為$\frac{66}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知雙曲線C:${x^2}-\frac{y^2}{3}=1$的左、右焦點分別是F1,F(xiàn)2,若A是雙曲線右支上一點且滿足$∠{F_1}A{F_2}={60^o}$,則${S_{△{F_1}A{F_2}}}$=( 。
A.$3\sqrt{3}$B.$\sqrt{3}$C.$2\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1(a>0,b>0)$與函數(shù)y=$\sqrt{x}$的圖象交于點P,若函數(shù)y=$\sqrt{x}$的圖象在點P處的切線過雙曲線左焦點F(-2,0),則雙曲線的離心率是(  )
A.$\frac{\sqrt{5}+1}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{3}+1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若圓C經(jīng)過點A(1,3)、B(3,5),且圓心C在直線2x-y+3=0上,則圓的標準方程為(x-1)2+(y-5)2=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設(shè)P是雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{9}$=1上一點,雙曲線的漸近線方程是y=$±\frac{3}{2}x$,F(xiàn)1、F2分別是雙曲線的左、右焦點.若PF1=3,求PF2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{4}$=1的焦點為F1,F(xiàn)2,點P為其上的動點,當∠F1PF2為鈍角時,點P橫坐標的取值范圍是(-$\sqrt{6}$,-2)∪(2,$\sqrt{6}$).

查看答案和解析>>

同步練習冊答案