4.已知函數(shù)f(x)=x2-lnx.
(Ⅰ)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)設(shè)g(x)=x2-x+t,若函數(shù)h(x)=f(x)-g(x)在$[\frac{1}{e},e]$上(這里e≈2.718)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)t的取值范圍.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),得到f′(1)和f(1)的值,代入直線方程即可;
(Ⅱ)問題等價(jià)于t=x-lnx在$[\frac{1}{e},e]$上恰有兩個(gè)不同的實(shí)根,根據(jù)函數(shù)的單調(diào)性求出t的范圍即可.

解答 解:(Ⅰ)函數(shù)定義域?yàn)椋?,+∞),
f′(x)=2x-$\frac{1}{x}$,∴f′(1)=1,
又f(1)=1,∴所求切線方程為y-1=x-1,
即:x-y=0;
(Ⅱ)函數(shù)h(x)=f(x)-g(x)=-lnx+x-t在$[\frac{1}{e},e]$上恰有兩個(gè)不同的零點(diǎn),
等價(jià)于-lnx+x-t=0在$[\frac{1}{e},e]$上恰有兩個(gè)不同的實(shí)根,
等價(jià)于t=x-lnx在$[\frac{1}{e},e]$上恰有兩個(gè)不同的實(shí)根,
令k(x)=x-lnx,則$k'(x)=1-\frac{1}{x}=\frac{x-1}{x}$,
∴當(dāng)$x∈(\frac{1}{e},1)$時(shí),k′(x)<0,∴k(x)在$(\frac{1}{e},1)$遞減;
當(dāng)x∈(1,e]時(shí),k′(x)>0,∴k(x)在(1,e]遞增,
故kmin(x)=k(1)=1,又$k(\frac{1}{e})=\frac{1}{e}+1,k(e)=e-1$,
∵$k(\frac{1}{e})-k(e)=2-e+\frac{1}{e}<0$,
∴$k(\frac{1}{e})<k(e)$,∴$k(1)<t≤k(\frac{1}{e})$,
即$t∈(1,1+\frac{1}{e}]$.

點(diǎn)評(píng) 本題考查了曲線的切線方程,考查函數(shù)的單調(diào)性、最值問題,考查參數(shù)分離,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩焦點(diǎn)F1,F(xiàn)2,若M是橢圓上一點(diǎn),且滿足∠F1MF2=60°,則離心率的范圍是( 。
A.$[{\frac{1}{2},1})$B.$[{\frac{{\sqrt{3}}}{2},1})$C.$({0,\frac{1}{2}}]$D.$({0,\frac{{\sqrt{3}}}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左頂點(diǎn)和上頂點(diǎn)分別為A、B,左、右焦點(diǎn)分別是F1,F(xiàn)2,在線段AB上有且只有一個(gè)點(diǎn)P滿足PF1⊥PF2,則橢圓的離心率為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{{\sqrt{5}}}{3}$D.$\frac{{\sqrt{5}-1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=x3-4x2+5x-4.求曲線f(x)在點(diǎn)(2,f(2))處的切線方程x-y-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f′(x),對(duì)?x∈R,f(-x)+f(x)=x2,且當(dāng)x∈(0,+∞),f′(x)>x,若有f(1-a)-f(a)≥$\frac{1}{2}$-a,則實(shí)數(shù)a的取值范圍為( 。ā 。
A.(-∞,$\frac{1}{2}$]B.[$\frac{1}{2}$,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列四個(gè)圖象中,有一個(gè)是函數(shù)f(x)=$\frac{1}{3}$x3+ax2+(a2-9)x+1(a∈R,a≠0)的導(dǎo)函數(shù)y=f′(x)的圖象,則f(1)=( 。
A.$\frac{13}{3}$B.$\frac{4}{3}$C.-$\frac{5}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=xex-aex-1,且f′(1)=e.
(1)求a的值及f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=kx2-2(k>2)存在兩個(gè)不相等的正實(shí)數(shù)根x1,x2,證明:|x1-x2|>ln$\frac{4}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知正方形ABCD的邊長(zhǎng)為2,點(diǎn)E是AB邊上的中點(diǎn),則$\overrightarrow{DE}•\overrightarrow{DC}$的值為( 。
A.1B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點(diǎn)A(3,0),過拋物線y2=4x上一點(diǎn)P的直線與直線x=-1垂直相交于點(diǎn)B,若|PB|=|PA|,則點(diǎn)P的橫坐標(biāo)為(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案