15.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左頂點和上頂點分別為A、B,左、右焦點分別是F1,F(xiàn)2,在線段AB上有且只有一個點P滿足PF1⊥PF2,則橢圓的離心率為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{{\sqrt{5}}}{3}$D.$\frac{{\sqrt{5}-1}}{2}$

分析 由題意可求得AB的方程,設(shè)出P點坐標(biāo),代入AB的方程,由PF1⊥PF2,得$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,運用導(dǎo)數(shù)求得極值點,結(jié)合橢圓的離心率公式,解方程即可求得答案.

解答 解:依題意,作圖如下:
由A(-a,0),B(0,b),F(xiàn)1(-c,0),F(xiàn)2(c,0),
可得直線AB的方程為:$\frac{x}{-a}$+$\frac{y}$=1,整理得:bx-ay+ab=0,
設(shè)直線AB上的點P(x,y),則bx=ay-ab,
x=$\frac{a}$y-a,
由PF1⊥PF2
∴$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=(-c-x,-y)•(c-x,-y)=x2+y2-c2
=($\frac{a}$y-a)2+y2-c2,
令f(y)=($\frac{a}$y-a)2+y2-c2,
則f′(y)=2($\frac{a}$y-a)•$\frac{a}$+2y,
由f′(y)=0得:y=$\frac{{a}^{2}b}{{a}^{2}+^{2}}$,于是x=-$\frac{a^{2}}{{a}^{2}+^{2}}$,
∴$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=(-$\frac{a^{2}}{{a}^{2}+^{2}}$)2+($\frac{{a}^{2}b}{{a}^{2}+^{2}}$)2-c2=0,
整理得:$\frac{{a}^{2}^{2}}{{a}^{2}+^{2}}$=c2,又b2=a2-c2,e2=$\frac{{c}^{2}}{{a}^{2}}$,
∴e4-3e2+1=0,
∴e2=$\frac{3±\sqrt{5}}{2}$,又橢圓的離心率e∈(0,1),
∴e2=$\frac{3-\sqrt{5}}{2}$=($\frac{\sqrt{5}-1}{2}$)2
可得e=$\frac{\sqrt{5}-1}{2}$,
另解:由題意可得,直線AB與圓O:x2+y2=c2相切,
可得d=$\frac{ab}{\sqrt{{a}^{2}+^{2}}}$=c,
又b2=a2-c2,e2=$\frac{{c}^{2}}{{a}^{2}}$,
∴e4-3e2+1=0,
∴e2=$\frac{3±\sqrt{5}}{2}$,又橢圓的離心率e∈(0,1),
∴e2=$\frac{3-\sqrt{5}}{2}$=($\frac{\sqrt{5}-1}{2}$)2,
可得e=$\frac{\sqrt{5}-1}{2}$,
故選:D.

點評 本題考查橢圓的性質(zhì),向量的數(shù)量積的坐標(biāo)表示,考查直線的方程的運用,著重考查橢圓離心率,以及化簡整理的運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知曲線C的方程為2x2-3y-8=0,則正確的是( 。
A.點(3,0)在曲線C上B.點(0,-$\frac{2}{3}$)在曲線C上
C.點($\frac{3}{2}$,1)在曲線C上D.點(0,-$\frac{8}{3}$)在曲線C上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=lnx-$\frac{1}{2}$ax2-2x,其中a≤0.
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線方程為y=2x+b,求a-2b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)設(shè)函數(shù)g(x)=x2-3x+3,如果對于任意的x,t∈(0,1],都有f(x)≤g(t)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{lnx}{x}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和最大值;
(2)若兩不等正數(shù)m,n滿足mn=nm,函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),求證:f′($\frac{m+n}{2}$)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知拋物線x2=-2py(p>0)經(jīng)過點(2,-2),則拋物線的焦點坐標(biāo)為(  )
A.$(0,-\frac{1}{8})$B.$(-\frac{1}{8},0)$C.$(0,-\frac{1}{2})$D.$(-\frac{1}{2},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點分別為F1,F(xiàn)2,且離心率為$\frac{1}{2}$,點P為橢圓上一動點,△F1PF2面積的最大值為$\sqrt{3}$.
(1)求橢圓的方程;
(2)設(shè)橢圓的左頂點為A1,過右焦點F2的直線l與橢圓相交于A,B兩點,連結(jié)A1A,A1B并延長分別交直線x=4于P,Q兩點,問$\overrightarrow{P{F_2}}•\overrightarrow{Q{F_2}}$是否為定值?若是,求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知曲線$y=\frac{2x}{x-1}$在點P(2,4)處的切線與直線l平行且距離為$2\sqrt{5}$,則直線l的方程為( 。
A.2x+y+2=0B.2x+y+2=0或2x+y-18=0
C.2x-y-18=0D.2x-y+2=0或2x-y-18=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2-lnx.
(Ⅰ)求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)設(shè)g(x)=x2-x+t,若函數(shù)h(x)=f(x)-g(x)在$[\frac{1}{e},e]$上(這里e≈2.718)恰有兩個不同的零點,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=e1-x(-a+cosx),a∈R.
(Ⅰ)若函數(shù)f(x)存在單調(diào)減區(qū)間,求實數(shù)a的取值范圍;
(Ⅱ)若a=0,證明:$?x∈[{-1,\frac{1}{2}}]$,總有f(-x-1)+2f′(x)•cos(x+1)>0.

查看答案和解析>>

同步練習(xí)冊答案