12.若點(diǎn)(2,$\sqrt{2}$)在冪函數(shù)f(x)=xa的圖象上,則f($\frac{1}{4}$)=$\frac{1}{2}$.

分析 根據(jù)冪函數(shù)f(x)的圖象經(jīng)過點(diǎn)(2,$\sqrt{2}$),列出方程,求出a的值,再代值計(jì)算即可

解答 解:∵冪函數(shù)f(x)=xa的圖象經(jīng)過點(diǎn)(2,$\sqrt{2}$),
∴2a=$\sqrt{2}$;
解得a=$\frac{1}{2}$,
∴f(x)=$\sqrt{x}$,
∴f($\frac{1}{4}$)=$\sqrt{\frac{1}{4}}$=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$

點(diǎn)評 本題考查了冪函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a,b,c,d都是正實(shí)數(shù),且a+b+c+d=1,求證:$\frac{a^2}{1+a}$+$\frac{b^2}{1+b}$+$\frac{c^2}{1+c}$+$\frac{d^2}{1+d}$≥$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.全集為R,已知數(shù)集A、B在數(shù)軸上表示如圖所示,那么“x∉B”是“x∈A”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|x+$\frac{1}{x}$|-|x-$\frac{1}{x}$|;
(1)作出函數(shù)f(x)的圖象;
(2)根據(jù)(1)所得圖象,填寫下面的表格:
 性質(zhì)定義域 值域 單調(diào)性 奇偶性 零點(diǎn) 
 f(x)     
(3)關(guān)于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6個(gè)不同的實(shí)數(shù)解,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C的中心在坐標(biāo)原點(diǎn)O,左焦點(diǎn)為F(-l,0),離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)F的直線,與橢圓C交于A、B兩點(diǎn),設(shè)$\overrightarrow{AF}=λ\overrightarrow{FB}$(其中1<入<3),求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知sinα和cosα是方程x2-kx+k+1=0的兩根,且π<α<2π,則α+k=$\frac{3π}{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={(x,y)|y≥|x-l|},B={(x,y)|x-2y+2≥0),C={(x,y)|ax-y+a≥0},若(A∩B)⊆C,則實(shí)數(shù)a的最小值為(  )
A.-2B.一1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=alnx+$\frac{2{a}^{2}}{x}$+x(a≠0).
(1)若函數(shù)y=f(x)在點(diǎn)(1,f(1))處的切線與直線x-2y+3=0垂直,求實(shí)數(shù)a的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.曲線$\frac{1}{x^2}+\frac{4}{y^2}=1$上的點(diǎn)到原點(diǎn)O的距離最小值等于3.

查看答案和解析>>

同步練習(xí)冊答案