A. | -9 | B. | -1 | C. | 1 | D. | -4 |
分析 令導(dǎo)函數(shù)當(dāng)x=2時(shí)為0,列出方程求出a值;求出二次函數(shù)f′(n)的最大值,利用導(dǎo)數(shù)求出f(m)的最大值,它們的和即為f(m)+f′(n)的最大值.
解答 解:求導(dǎo)數(shù)可得f′(x)=-3x2+2ax
∵函數(shù)f(x)=-x3+ax2-4在x=2處取得極值,
∴-12+4a=0,解得a=3
∴f′(x)=-3x2+6x
∴n∈[0,1]時(shí),f′(n)=-3n2+6n,當(dāng)n=1時(shí),f′(n)最大,最大為3;
當(dāng)m∈[0,1]時(shí),f(m)=-m3+3m2-4
f′(m)=-3m2+6m
令f′(m)=0得m=0,m=2
所以m=1時(shí),f(m)最大為-2
故f(m)+f′(n)的最大值為3-2=1.
故選:C.
點(diǎn)評(píng) 本題考查了函數(shù)在某點(diǎn)取得極值的條件,要注意極值點(diǎn)一定是導(dǎo)函數(shù)對(duì)應(yīng)方程的根,但是導(dǎo)函數(shù)對(duì)應(yīng)方程的根不一定是極值點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1) | B. | (-1,1) | C. | (1,+∞) | D. | (-∞,-1)和(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{4}$+y2=1 | B. | $\frac{x^2}{8}$+$\frac{y^2}{6}$=1 | C. | $\frac{x^2}{2}$+y2=1 | D. | $\frac{x^2}{4}$+$\frac{y^2}{3}$=1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com