14.已知函數(shù)f(x)=$\frac{{x}^{2}-3}{{e}^{x}}$在區(qū)間(0,a)上單調(diào),則a的最大值是3.

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出a的最大值即可.

解答 解:f′(x)=$\frac{{-x}^{2}+2x+3}{{e}^{x}}$,
令f′(x)>0,解得:-1<x<3,
由f(x)在(0,a)單調(diào),
結(jié)合題意f(x)在(0,a)遞增,
故a的最大值是3,
故答案為:3.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,正方形BCDE的邊長為a,已知AB=$\sqrt{3}$BC,將直角△ABE沿BE邊折起,A點在BCDE上的射影為D點,則對翻折后的幾何體有如下描述,其中錯誤的敘述的是( 。
A.AB與DE所成角的正切值是$\sqrt{2}$
B.三棱錐B-ACE的體積是$\frac{1}{6}{a^3}$
C.直線BA與平面ADE所成角的正弦值為$\frac{1}{3}$
D.平面EAB⊥平面ADE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知sinx-cosx=$\frac{1}{5}$(0<x<π),則tanx的值等于( 。
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{4}$或 $\frac{4}{3}$D.-$\frac{3}{4}$或-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)面ADD1A1⊥底面ABCD,D1A=D1D=$\sqrt{2}$,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2
(1)在平面ABCD內(nèi)找一點F,使得D1F⊥平面AB1C;
(2)求二面角C-B1A-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,直三棱柱ABC-A1B1C1中,AA1=AB=AC=2,D,E,F(xiàn)分別是B1A1,CC1,BC的中點,AE⊥A1B1,D為棱A1B1上的點.
(1)證明:DF⊥AE;
(2)求平面DEF與平面ABC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2lnx+x2-a2x(x>0,a∈R).
(1)當a>0時,若函數(shù)f(x)在[1,2]上單調(diào)遞減,求a的最小值;
(2)當a=$\sqrt{5}$時,f(x)在區(qū)間(k-$\frac{1}{2}$,k)上為單調(diào)函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某小朋友按如下規(guī)則練習(xí)數(shù)數(shù),1大拇指,2食指,3中指,4無名指,5小指,6無名指,7中指,8食指,9大拇指,10食指,…一直數(shù)到2016時,對應(yīng)的指頭是( 。
A.小指B.中指C.食指D.大拇指

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如表
廣告費用 x(萬元)4235
銷售額y(萬元)49263954
根據(jù)上表可得回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中的$\widehat$為10,據(jù)此模型預(yù)報廣告費用為6萬元時銷售額為67萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=cos2ωx-sin2ωx+2$\sqrt{3}$cosωx•sinωx,其中ω>0,若f(x)相鄰兩條對稱軸間的距離不小于$\frac{π}{2}$
(1)求ω的取值范圍及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,a=$\sqrt{3}$,b+c=3,當ω最大時,f(A)=1,求sinB•sinC的值.

查看答案和解析>>

同步練習(xí)冊答案