【題目】設(shè)函數(shù)的定義域為I,區(qū)間,記.證明:
(1)函數(shù)在區(qū)間D上單調(diào)遞增的充要條件是:,都有;
(2)函數(shù)在區(qū)間D上單調(diào)遞減的充要條件是:,都有.
【答案】(1)證明見解析;(2)證明見解析
【解析】
(1)先證明充分性,利用函數(shù)單調(diào)性的定義以及題設(shè)條件得出在D上單調(diào)遞增,再證必要性,不妨設(shè),則,由函數(shù)在D上單調(diào)遞增,得出,即可證明;
(2)先證明充分性,利用函數(shù)單調(diào)性的定義以及題設(shè)條件得出在D上單調(diào)遞減,再證必要性,不妨設(shè),則,由函數(shù)在D上單調(diào)遞減,得出,即可證明;
證明:(1)充分性:不妨設(shè),則
即在D上單調(diào)遞增.
必要性:若在D上單調(diào)遞增.
則,不妨設(shè),則.
.
即,都有.
(2)充分性:不妨設(shè),則,
,即,
在D上單調(diào)遞減.
必要性:若在D上單調(diào)遞減.
,不妨設(shè),則.
即,都有.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,多面體ABCDEF中,四邊形ABCD為矩形,二面角A-CD-F為60°,DE∥CF,CD⊥DE,AD=2,DE=DC=3,CF=6.
(1)求證:BF∥平面ADE;
(2)在線段CF上求一點G,使銳二面角B-EG-D的余弦值為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量, .
(1)若分別表示將一枚質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6),先后拋擲兩次時第一次、第二次出現(xiàn)的點數(shù),求滿足的概率;
(2)若在連續(xù)區(qū)間上取值,求滿足的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機構(gòu)為了解路人對“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機抽取30名路人進行了問卷調(diào)查,得到了如下列聯(lián)表:
項目 | 男性 | 女性 | 總計 |
反感 | 10 | ||
不反感 | 8 | ||
總計 | 30 |
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是.
(1)請將上面的列聯(lián)表補充完整(直接寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關(guān)?
(2)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學期望.
附:K2=
.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分)如圖,在直角坐標系中,角的頂點是原點,始邊與軸正半軸重合.終邊交單位圓于點,且,將角的終邊按逆時針方向旋轉(zhuǎn),交單位圓于點,記.
(1)若,求;
(2)分別過作軸的垂線,垂足依次為,記的面積為,的面積為,若,求角的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,如圖所示,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設(shè)利用的舊墻的長度為x(單位:元)。
(Ⅰ)將y表示為x的函數(shù);
(Ⅱ)試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:,其左、右焦點分別為,上頂點為,為坐標原點,過的直線交橢圓于兩點,.
(1)若直線垂直于軸,求的值;
(2)若,直線的斜率為,則橢圓上是否存在一點,使得關(guān)于直線成軸對稱?如果存在,求出點的坐標;如果不存在,請說明理由;
(3)設(shè)直線:上總存在點滿足,當的取值最小時,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義在上的函數(shù),若存在距離為的兩條直線和,使得對任意都有恒成立,則稱函數(shù)有一個寬度為的通道.給出下列函數(shù):
①; ②; ③; ④.
其中在區(qū)間上有一個通道寬度為的函數(shù)是__________(寫出所有正確的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com