【題目】有12個球,顏色、大小完全一樣,在重量上,其中一個球不合格,但不知這個球比標(biāo)準(zhǔn)的重還是輕.能否在一架天平上只稱三次(不用砝碼),把這個不合格的球找出來?
【答案】見解析
【解析】
把12個球編成號,則可設(shè)計下面的稱法:
1 | 左盤 | 右盤 |
第一次 | ||
第二次 | ||
第三次 |
每次稱都可能有平衡、左重、右重三種結(jié)果,搭配起來總共有27種,但平、平、平的結(jié)果不會出現(xiàn),因與題意不符.
同樣,左重、左重、左重,右重、右重、右重的結(jié)果也不會出現(xiàn),因為我們設(shè)計稱法時,沒有同一個球三次在左邊或三次在右邊的情況,所以,在只有一個不合格球的情況下,不會出現(xiàn)上述結(jié)果.
在其余可出現(xiàn)的24種情況中,每兩種結(jié)果可以確定一個球是重還是輕.例如,如果稱的結(jié)果是平、平、左重,就可以斷定不合格的球是9號,且9號球輕些;如果結(jié)果是平、平、右重,仍可以斷定不合格的球是9號,但9號球重些.
同理,如果出現(xiàn)其他情況,按照這一方法,也可以順利地把不合格球找出來.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某健身館為響應(yīng)十九屆四中全會提出的“聚焦增強(qiáng)人民體質(zhì),健全促進(jìn)全民健身制度性舉措”,提高廣大市民對全民健身運(yùn)動的參與程度,推出了健身促銷活動,收費(fèi)標(biāo)準(zhǔn)如下:健身時間不超過1小時免費(fèi),超過1小時的部分每小時收費(fèi)標(biāo)準(zhǔn)為20元(不足l小時的部分按1小時計算).現(xiàn)有甲、乙兩人各自獨立地來該健身館健身,設(shè)甲、乙健身時間不超過1小時的概率分別為,,健身時間1小時以上且不超過2小時的概率分別為,,且兩人健身時間都不會超過3小時.
(1)設(shè)甲、乙兩人所付的健身費(fèi)用之和為隨機(jī)變量(單位:元),求的分布列與數(shù)學(xué)期望;
(2)此促銷活動推出后,健身館預(yù)計每天約有300人來參與健身活動,以這兩人健身費(fèi)用之和的數(shù)學(xué)期望為依據(jù),預(yù)測此次促銷活動后健身館每天的營業(yè)額.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A. B. C的對邊分別為a,b,c,己知=b(c-asinC)。
(1)求角A的大小;
(2)設(shè)b=c,N是△ABC所在平面上一點,且與A點分別位于直線BC的兩側(cè),如圖,若BN=4,CN=2,求四邊形ABNC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù).
(1)試討論f(x)的單調(diào)性;
(2)若函數(shù)有且只有三個不同的零點,分別記為x1,x2,x3,設(shè)x1<x2<x3,且的最大值是e2,求x1x3的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“2019曹娥江國際馬拉松”在上虞舉行,現(xiàn)要選派5名志愿者服務(wù)于四個不同的運(yùn)動員救助點,每個救助點至少分配1人,若志愿者甲要求不到A救助點,則不同的分派方案有________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0)的兩個焦點分別為F1,F2,離心率為,過F1的直線l與橢圓C交于M,N兩點,且△MNF2的周長為8.
(1)求橢圓C的方程;
(2)若直線y=kx+b與橢圓C分別交于A,B兩點,且OA⊥OB,試問點O到直線AB的距離是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】試確定平面上是否存在滿足下述條件的兩個不相交的無限點集、:
(1)在中,任何三點不共線,且任何兩點的距離至少為1;
(2)任何一個頂點在中的三角形,其內(nèi)部均存在一個中的點,任何一個頂點在中的三角形,其內(nèi)部均存在一個中的點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系的原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.
(1)求曲線的普通方程;
(2)若與曲線相切,且與坐標(biāo)軸交于兩點,求以為直徑的圓的極坐標(biāo)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com