分析 由平面向量數(shù)量積的運(yùn)算得到ab•cosC=2,結(jié)合正弦定理得到C;最后根據(jù)余弦定理可以求得c的值.
解答 解:∵在△ABC中,已知A,B,C分別為邊a,b,c所對(duì)的角,已知$\overrightarrow{CA}•\overrightarrow{CB}=2$,
∴ab•cosC=2,①
∵$S=\sqrt{3}$,
∴$\frac{1}{2}$absinC=$\sqrt{3}$,則absinC=2$\sqrt{3}$,②
由①②得到tanC=$\sqrt{3}$.
∵0<C<180°,
∴C=60°.
∵a+b=ab,
∴ab=$\frac{2}{\frac{1}{2}}$=4,
∴a2+b2=(a+b)2-2ab=42-2×4=8,
再由余弦定理可得 c2=a2+b2-2ab•cosC=8-4=4,
則c=2(舍去負(fù)值).
故答案是:2.
點(diǎn)評(píng) 本題考查了正弦定理和平面向量數(shù)量積的運(yùn)算,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | α=-β | B. | α=180°+β | ||
C. | α=k•360°+β,k∈Z | D. | α=k•360°±180°+β,k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -8 | B. | 4 | C. | 10 | D. | 2014 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com