9.已知雙曲線的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn),雙曲線的右支上有一點(diǎn)P,∠F1PF2=$\frac{π}{3}$,且△PF1F2的面積為2$\sqrt{3}$,又雙曲線的離心率為2,求該雙曲線的方程.

分析 根據(jù)點(diǎn)P是雙曲線的左支上的一點(diǎn),及雙曲線的定義可知|PF1|-|PF2|=2a,由,∠F1PF2=$\frac{π}{3}$,且△PF1F2的面積為2$\sqrt{3}$,可以求得|PF2|•|PF1|的值,根據(jù)余弦定理可以求得a,c的一個(gè)方程,雙曲線的離心率為2,根據(jù)雙曲線的離心率的定義式,可以求得a,c的一個(gè)方程,解方程組即可求得該雙曲線的方程.

解答 解:設(shè)雙曲線方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),
F1(-c,0),F(xiàn)2(c,0),P(x0,y0).
在△PF1F2中,由余弦定理得,
|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|•cos$\frac{π}{3}$
=(|PF1|-|PF2|)2+|PF1|•|PF2|,
即4c2=4a2+|PF1|•|PF2|,
又S${\;}_{P{F}_{1}{F}_{2}}$=$\frac{1}{2}$|PF1|•|PF2|•sin$\frac{π}{3}$=2$\sqrt{3}$,
即有|PF1|•|PF2|=8,
可得4c2=4a2+8,即b2=2,
又e=$\frac{c}{a}$=2,且c2=a2+b2,
解得a2=$\frac{2}{3}$.
則雙曲線的方程為$\frac{3{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1.

點(diǎn)評 本題考查雙曲線的定義和待定系數(shù)法求雙曲線的標(biāo)準(zhǔn)方程,及利用余弦定理解圓錐曲線的焦點(diǎn)三角形,解題過程注意整體代換的方法,簡化計(jì)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知橢圓$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的離心率為e,直線l:y=x+1經(jīng)過橢圓C的一個(gè)焦點(diǎn),點(diǎn)(1,1)關(guān)于直線l的對稱點(diǎn)也在橢圓C上,則$\frac{2e}{{m}^{2}+1}$+m2的最小值為( 。
A.1B.$\sqrt{2}$C.2$\sqrt{2}$-1D.均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.植樹節(jié)期間我市組織義工參加植樹活動,為方便安排任務(wù)將所有義工按年齡分組:第l組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的部分頻率分布表如下:
區(qū)間人數(shù)頻率
第1組[25,30)500.1
第2組[30,35)500.1
第3組[35,40)a0.4
第4組[40,45)150b
(1)求a,b的值;
(2)現(xiàn)在要從年齡較小的第l,2,3組中用分層抽樣的方法隨機(jī)抽取6人擔(dān)任聯(lián)系人,在第l,2,3組抽取的義工的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人擔(dān)任本次活動的宣傳員,求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知P(x0,y0)是雙曲線C:$\frac{{x}^{2}}{2}-{y}^{2}$=1上的一點(diǎn),F(xiàn)1,F(xiàn)2是C的兩個(gè)焦點(diǎn),若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$≥0,則x0的取值范圍是( 。
A.[-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$]B.(-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$)C.(-∞,-$\frac{2\sqrt{6}}{3}$]∪[$\frac{2\sqrt{6}}{3}$,+∞)D.(-∞,-$\frac{2\sqrt{6}}{3}$)∪($\frac{2\sqrt{6}}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線方程為x2-$\frac{{y}^{2}}{4}$=1,過點(diǎn)P(1,1)的直線l與雙曲線只有一個(gè)公共點(diǎn),則l的條數(shù)共有( 。
A.4條B.3條C.2條D.1條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若x,y滿足約束條件$\left\{\begin{array}{l}{y≥1}\\{2x-y-1≥0}\\{x+y-a≤0}\end{array}\right.$,且z=3x-2y+3的最小值為2,則實(shí)數(shù)a的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足a1=1,an+2=1+$\frac{1}{{a}_{n}}$(n∈N*),若a2014=a2016,則a13+a2016=$\frac{21}{13}$+$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知某程序框圖如圖所示,則執(zhí)行該程序后輸出的結(jié)果是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求過點(diǎn)A(4,1)且符合下列條件的直線方程.
(1)在y軸上的截距是在x軸上截距的3倍;
(2)在兩坐標(biāo)軸上的截距和為10.

查看答案和解析>>

同步練習(xí)冊答案