1.已知各項均為正數(shù)的數(shù)列{an}滿足a1=1,an+2=1+$\frac{1}{{a}_{n}}$(n∈N*),若a2014=a2016,則a13+a2016=$\frac{21}{13}$+$\frac{1+\sqrt{5}}{2}$.

分析 各項均為正數(shù)的數(shù)列{an}滿足a1=1,an+2=1+$\frac{1}{{a}_{n}}$(n∈N*),a2014=a2016,可得a2016=1+$\frac{1}{{a}_{2014}}$,化簡解出a2014=$\frac{1+\sqrt{5}}{2}$=a2016.由a1=1,an+2=1+$\frac{1}{{a}_{n}}$(n∈N*),可得a3=2,依此類推可得:a13=$\frac{21}{13}$.即可得出.

解答 解:∵各項均為正數(shù)的數(shù)列{an}滿足a1=1,an+2=1+$\frac{1}{{a}_{n}}$(n∈N*),a2014=a2016,
∴a2016=1+$\frac{1}{{a}_{2014}}$,即a2014=1+$\frac{1}{{a}_{2014}}$,化為${a}_{2014}^{2}$-a2014-1=0,解得a2014=$\frac{1+\sqrt{5}}{2}$=a2016
∵a1=1,an+2=1+$\frac{1}{{a}_{n}}$(n∈N*),∴a3=2,a5=$\frac{3}{2}$,a7=$\frac{5}{3}$,a9=$\frac{8}{5}$,a11=$\frac{13}{8}$,a13=$\frac{21}{13}$.
則a13+a2016=$\frac{21}{13}$+$\frac{1+\sqrt{5}}{2}$.
故答案為:$\frac{21}{13}$+$\frac{1+\sqrt{5}}{2}$.

點評 本題考查了遞推關(guān)系、方程的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若一個球的半徑與它的內(nèi)接圓錐的底面半徑之比為$\frac{5}{3}$,且內(nèi)接圓錐的軸截面為銳角三角形,則該球的體積與它的內(nèi)接圓錐的體積之比等于$\frac{500}{81}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.P是雙曲線x2-y2=16左支上一點,F(xiàn)1、F2分別是左、右焦點,則|PF1|-|PF2|=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知雙曲線的中心在坐標(biāo)原點,焦點在x軸上,F(xiàn)1,F(xiàn)2分別為左、右焦點,雙曲線的右支上有一點P,∠F1PF2=$\frac{π}{3}$,且△PF1F2的面積為2$\sqrt{3}$,又雙曲線的離心率為2,求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=-$\sqrt{\frac{1}{{x}^{2}}+4}$(x>0),在數(shù)列{an}中,a1=1,$\frac{1}{{a}_{n+1}}$=-f(an),n∈N*,設(shè)bn=$\frac{{a}_{n}•{a}_{n+1}}{{a}_{n}+{a}_{n+1}}$,數(shù)列{bn}的前n項和為Tn,則T20=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求不等式(2x+1)2(x-3)(3x-2)3(x-4)≤0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某校教師進行體格檢查,測得他們的收縮壓(血壓,單位:毫米汞柱)的值如表所示:
收縮壓范圍 89.5~104.4 104.5~119.4 119.5~134.4 134.5~149.4149.5~164.4  164.5~179.4
 人數(shù) 24 62 7226  124
求該校教師收縮壓的平均數(shù)和中位數(shù)(用各收縮壓范圍的中點的值代表該范圍取值,結(jié)果精確到0.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某電器專賣店銷售某種型號的空調(diào),記第n天(1≤n≤30,n∈N+)的日銷售量為f(n)(單位;臺).函數(shù)f(n)圖象中的點分別在兩條直線上,如圖,該兩直線交點的橫坐標(biāo)為m(m∈N+),已知1≤n≤m時,函數(shù)f(n)=32-n.
(1)當(dāng)m≤n≤30時,求函數(shù)f(n)的解析式;
(2)求m的值及該店前m天此型號空調(diào)的銷售總量;
(3)按照經(jīng)驗判斷,當(dāng)該店此型號空調(diào)的銷售總量達到或超過570臺,且日銷售量仍持續(xù)增加時,該型號空調(diào)開始旺銷,問該店此型號空調(diào)銷售到第幾天時,才可被認(rèn)為開始旺銷?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某課題組對全班45名同學(xué)的飲食習(xí)慣進行了一次調(diào)查,并用莖葉圖表示45名同學(xué)的飲食指數(shù),說明:圖中飲食指數(shù)低于70的人被認(rèn)為喜食蔬菜,飲食指數(shù)不低于70的人被認(rèn)為喜食肉類.
(1)求飲食指數(shù)在[10,39]女同學(xué)中選取2人,恰有1人在[20,29]中的概率.
(2)根據(jù)莖葉圖,完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為喜食蔬菜還是喜食肉類與性別有關(guān),說明理由.
喜食蔬菜喜食肉類合計
男同學(xué)
女同學(xué)
合計
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
如表臨界值表僅供參考:
P(k2≥k)0.1000.0500.010
k2.7063.8416.635

查看答案和解析>>

同步練習(xí)冊答案