12.已知橢圓Г:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2c,左焦點(diǎn)為F,若直線y=x+c與橢圓交于A,B 兩點(diǎn),且|AF|=3|FB|,則橢圓的離心率為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

分析 聯(lián)立橢圓方程和直線方程,求得A,B兩點(diǎn)的縱坐標(biāo),把|AF|=3|FB|化為縱坐標(biāo)的關(guān)系得答案.

解答 解:如圖,
聯(lián)立$\left\{\begin{array}{l}{y=x+c}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1}\end{array}\right.$,得(a2+b2)y2-2b2cy-b4=0.
解得:$y=\frac{2^{2}c±\sqrt{(-2^{2}c)^{2}-4({a}^{2}+^{2})×(-^{4})}}{2({a}^{2}+^{2})}$=$\frac{2^{2}c±\sqrt{8{a}^{2}^{4}}}{2({a}^{2}+^{2})}$,
即${y}_{B}=\frac{^{2}c-\sqrt{2}a^{2}}{{a}^{2}+^{2}}$,${y}_{A}=\frac{^{2}c+\sqrt{2}a^{2}}{{a}^{2}+^{2}}$.
∵|AF|=3|FB|,∴yA=-3yB,
則$\frac{^{2}c+\sqrt{2}a^{2}}{{a}^{2}+^{2}}=-3\frac{^{2}c-\sqrt{2}a^{2}}{{a}^{2}+^{2}}$,
∴$^{2}c+\sqrt{2}a^{2}=-3^{2}c+3\sqrt{2}a^{2}$,
即$4^{2}c=2\sqrt{2}a^{2}$,
∴$a=\sqrt{2}c$,
∴$\frac{c}{a}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查了橢圓的簡(jiǎn)單幾何性質(zhì),考查了直線與圓錐曲線的關(guān)系,運(yùn)用了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某高中為了選拔學(xué)生參加“全國(guó)中學(xué)生英語(yǔ)能力競(jìng)賽(NEPCS)”,先在本校進(jìn)行初賽(滿分150分),若該校有100名學(xué)生參加初賽,并根據(jù)初賽成績(jī)得到如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,計(jì)算這100名學(xué)生參加初賽成績(jī)的中位數(shù);
(2)該校推薦初賽成績(jī)?cè)?10分以上的學(xué)生代表學(xué)校參加競(jìng)賽,為了了解情況,在該校推薦參加競(jìng)賽的學(xué)生中隨機(jī)抽取3人,求選取的三人的初賽成績(jī)?cè)陬l率分布直方圖中處于同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖所示,正三棱柱ABC-A1B1C1中,A1A=3,AB=2,D是BC上的中點(diǎn),D1是B1C1的中點(diǎn),
(1)求證:平面A1BD1∥平面AC1D.
(2)求四棱錐A1-B1BCC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知拋物線C:y2=4x.直線l:y=k(x-8)與拋物線C交于A,B(A在B的下方)兩點(diǎn),與x
軸交于點(diǎn)P.
(1)若點(diǎn)P恰為弦AB的三等分點(diǎn),試求實(shí)數(shù)k的值.
(2)過(guò)點(diǎn)P與直線l垂直的直線m與拋物線C交于點(diǎn)M,N,試求四邊形AMBN的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,E為AD上一點(diǎn),F(xiàn)為PC上一點(diǎn),四邊形BCDE為矩形,∠PAD=60°,PB=2$\sqrt{3}$,PA=ED=2AE=2.
(1)求證:PE⊥平面ABCD;
(2)若二面角F-BE-C為30°,設(shè)$\overrightarrow{PF}$=λ$\overrightarrow{FC}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如果點(diǎn)M(x,y)在直線3x-4y+4=0上,則f(x)=$\sqrt{(x+3)^{2}+(y-5)^{2}}$+$\sqrt{(x-2)^{2}+(y-15)^{2}}$取得最小值時(shí),點(diǎn)M的坐標(biāo)為(-8,-5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.動(dòng)點(diǎn)P為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上異于橢圓頂點(diǎn)A(a,0),B(-a,0)的一點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),動(dòng)圓M與線段F1P、F1F2的延長(zhǎng)線及線段PF2相切,則圓心M的軌跡為除去坐標(biāo)軸上的點(diǎn)的(  )
A.拋物線B.橢圓C.雙曲線的右支D.一條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,短軸長(zhǎng)為2.
(1)求橢圓E的方程;
(2)過(guò)圓C:x2+y2=r2(0<r<b)上的任意一點(diǎn)作圓C的切線l與橢圓E交于A,B兩點(diǎn),都有OA⊥OB(O為坐標(biāo)原點(diǎn)),求r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知8a3+9a+c=0,b3-$\frac{1}{{3}^}$-c=0,其中a,b,c均為非零實(shí)數(shù),則$\frac{a}$的值為-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案