4.某高中為了選拔學(xué)生參加“全國(guó)中學(xué)生英語(yǔ)能力競(jìng)賽(NEPCS)”,先在本校進(jìn)行初賽(滿分150分),若該校有100名學(xué)生參加初賽,并根據(jù)初賽成績(jī)得到如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,計(jì)算這100名學(xué)生參加初賽成績(jī)的中位數(shù);
(2)該校推薦初賽成績(jī)?cè)?10分以上的學(xué)生代表學(xué)校參加競(jìng)賽,為了了解情況,在該校推薦參加競(jìng)賽的學(xué)生中隨機(jī)抽取3人,求選取的三人的初賽成績(jī)?cè)陬l率分布直方圖中處于同組的概率.

分析 (1)設(shè)這100名學(xué)生參加初賽成績(jī)的中位數(shù)為x,由頻率分布直方圖的性質(zhì)能求出這100名學(xué)生參加初賽成績(jī)的中位數(shù).
(2)由頻率分布直方圖得該校初賽分?jǐn)?shù)在[110,130)的人數(shù)為4人,分?jǐn)?shù)在[130,150]的人數(shù)為2人,由此能求出選取的三人的初賽成績(jī)?cè)陬l率分布直方圖中處于同組的概率.

解答 解:(1)設(shè)這100名學(xué)生參加初賽成績(jī)的中位數(shù)為x,
由頻率分布直方圖,得:
(0.001+0.004+0.009)×20+0.02×(x-70)=0.5,
解得x=81.
∴這100名學(xué)生參加初賽成績(jī)的中位數(shù)為81.
(2)由頻率分布直方圖得該校初賽分?jǐn)?shù)在[110,130)的人數(shù)為:0.002×20×100=4人,
分?jǐn)?shù)在[130,150]的人數(shù)為0.001×20×100=2人,
該校推薦初賽成績(jī)?cè)?10分以上的學(xué)生代表學(xué)校參加競(jìng)賽,在該校推薦參加競(jìng)賽的學(xué)生中隨機(jī)抽取3人,
基本事件總數(shù)n=${C}_{6}^{3}$=20,
選取的三人的初賽成績(jī)?cè)陬l率分布直方圖中處于同組包含的基本事件個(gè)數(shù)m=${C}_{4}^{3}$=4,
∴選取的三人的初賽成績(jī)?cè)陬l率分布直方圖中處于同組的概率p=$\frac{m}{n}$=$\frac{4}{20}=\frac{1}{5}$.

點(diǎn)評(píng) 本題考查中位數(shù)和概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意頻率分布直方圖的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知點(diǎn)C(1,5),點(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}{x+2y+4≥0}\\{x+5y≤0}\\{x-y-2≤0}\end{array}\right.$,表示的平面區(qū)域內(nèi)(含邊界),則|PC|的最小值為( 。
A.$\sqrt{26}$B.$\sqrt{26}$-1C.$\sqrt{26}$+1D.$\sqrt{50}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某學(xué)校高中每個(gè)年級(jí)只有三個(gè)班,且同一年級(jí)的三個(gè)班的羽毛球水平相當(dāng),各年級(jí)舉辦班級(jí)羽毛球比賽時(shí),都是三班得冠軍的概率為(  )
A.$\frac{1}{27}$B.$\frac{1}{9}$C.$\frac{1}{8}$D.$\frac{1}{36}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,an=b•an-1,下列敘述正確的是(  )
A.當(dāng)b=0時(shí),數(shù)列{an}是等差數(shù)列B.當(dāng)b≠0時(shí),數(shù)列{an}是等比數(shù)列
C.當(dāng)b=0時(shí),Sn=a1D.當(dāng)b≠0時(shí),Sn=$\frac{{{a_1}({1-{b^n}})}}{1-b}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{3}$,<$\overrightarrow{a}$,$\overrightarrow$>=150°,則|2$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.1B.13C.$\sqrt{13}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某單位舉行聯(lián)歡活動(dòng),每名職工均有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)都是從甲箱和乙箱中各隨機(jī)摸取1個(gè)球,已知甲箱中裝有3個(gè)紅球,5個(gè)綠球,乙箱中裝有3個(gè)紅球,3個(gè)綠球,2個(gè)黃球.在摸出的2個(gè)球中,若都是紅球,則獲得一等獎(jiǎng);若都是綠球,則獲得二等獎(jiǎng);若只有1個(gè)紅球,則獲得三等獎(jiǎng);若1個(gè)綠球和1個(gè)黃球,則不獲獎(jiǎng).
(Ⅰ)求每名職工獲獎(jiǎng)的概率;
(Ⅱ)設(shè)X為前3名職工抽獎(jiǎng)中獲得一等獎(jiǎng)和二等獎(jiǎng)的次數(shù)之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.“ab<0”是“|a-b|=|a|+|b|”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.邊長(zhǎng)為2$\sqrt{3}$的正三角形ABC,其內(nèi)切圓與BC切于點(diǎn)E,F(xiàn)為內(nèi)切圓上任意一點(diǎn),則$\overrightarrow{AE}$•$\overrightarrow{AF}$的取值范圍為[3,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知橢圓Г:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2c,左焦點(diǎn)為F,若直線y=x+c與橢圓交于A,B 兩點(diǎn),且|AF|=3|FB|,則橢圓的離心率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案