18.在(-$\frac{π}{2}$,$\frac{π}{2}$)上隨機取一個數(shù)x,則tanx>1的概率為$\frac{1}{4}$.

分析 求出滿足tanx>1,x∈(-$\frac{π}{2}$,$\frac{π}{2}$)的x的范圍,以長度為測度,即可求得概率.

解答 解:∵tanx>1=tan$\frac{π}{4}$,x∈(-$\frac{π}{2}$,$\frac{π}{2}$)
∴$\frac{π}{4}$<x<$\frac{π}{2}$,
以區(qū)間長度為測度,可得所求概率為$\frac{\frac{π}{2}-\frac{π}{4}}{\frac{π}{2}+\frac{π}{2}}$=$\frac{1}{4}$,
故答案為:$\frac{1}{4}$.

點評 本題考查幾何概型,考查學(xué)生的計算能力,確定以長度為測度是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.下面幾個不等式的證明過程:
①若a、b∈R,則$\frac{a}$+$\frac{a}$≥2$\sqrt{\frac{a}•\frac{a}}$=2;
②x∈R且x≠0,則|x+$\frac{4}{x}}$|=|x|+$\frac{4}{|x|}$≥2$\sqrt{|x|•\frac{4}{|x|}}$;
③若a、b∈R,ab<0,則$\frac{a}$+$\frac{a}$=-(-$\frac{a}$+$\frac{-a}$)≤-2$\sqrt{-\frac{a}•\frac{-a}}$=-2.
其中正確的序號是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=x2+2(a-1)x+2的減區(qū)間為(-∞,4],則a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列四個判斷:
①若兩班級的人數(shù)分別是m,n,數(shù)學(xué)平均分分別是a,b,則這兩個班的數(shù)學(xué)平均分為$\frac{a+b}{2}$;
②命題p:?x∈R,x2-1>0,則命題p的否定是?x∈R,x2-1≤0;
③p:a+b≥2$\sqrt{ab}$(a,b∈R)q:不等式|x|>x的解集是(-∞,0),則‘p∧q’為假命題;
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=2.
其中正確判斷的個數(shù)有( 。
A.3個B.0個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知2a=5b=10,則下列說法不正確的是(  )
A.a2>b2B.$\frac{1}{a}$+$\frac{1}$=1C.(a-1)(b-1)=1D.logab>logba

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=sin2x+$\sqrt{3}$cos2x.
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞減區(qū)間;
(3)若函數(shù)g(x)=f(x)-k在(0,$\frac{π}{3}$]上有兩個不同的零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知P(B|A)=$\frac{1}{3}$,P(A)=$\frac{3}{5}$,則P(AB)等于( 。
A.$\frac{1}{5}$B.$\frac{2}{15}$C.$\frac{3}{15}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知直線l:$\left\{\begin{array}{l}{x=t}\\{y=t+1}\end{array}\right.$(t為參數(shù)),圓C:ρ=2cosθ,則圓心C到直線l的距離是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1.
(1)求函數(shù)f(x)的最小正周期和對稱中心;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案