分析 (1)利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的周期性,得出結(jié)論.
(2)根據(jù)函數(shù)的解析式,利用正弦函數(shù)的單調(diào)性,求得f(x)的減區(qū)間.
(3)由題意可得函數(shù)f(x)的圖象和直線y=k有2個(gè)不同的交點(diǎn),利用正弦函數(shù)的定義域和值域求得f(x)的值域,數(shù)形結(jié)合求得k的范圍.
解答 解:(1)函數(shù)f(x)=sin2x+$\sqrt{3}$cos2x
=2($\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x)=2sin(2x+$\frac{π}{3}$),
故它的最小正周期為$\frac{2π}{2}$=π.
(2)由令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,
求得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,
所以f(x)的單調(diào)遞減區(qū)間為[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.
(3)函數(shù)g(x)=f(x)-k在(0,$\frac{π}{3}$]上有兩個(gè)不同的零點(diǎn),
即函數(shù)f(x)的圖象和直線y=k有2個(gè)不同的交點(diǎn).
∵在(0,$\frac{π}{3}$]上,2x+$\frac{π}{3}$∈($\frac{π}{3}$,π],f(x)∈[0,2],
結(jié)合f(x)的圖象可得k∈($\sqrt{3}$,2).
點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的周期性和單調(diào)性,正弦函數(shù)的定義域和值域,正弦函數(shù)的圖象,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | q1,q3 | B. | q2,q3 | C. | q1,q4 | D. | q2,q4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com