14.在△ABC中,AB=2,AC=3,∠A=60°,D為線段BC上一點,且2BD=CD,則AD=$\frac{\sqrt{37}}{3}$.

分析 由已知利用余弦定理可求BC的值,進而可求BD,利用余弦定理求得cos∠B,在△ABD中利用余弦定理即可解得AD的值.

解答 解:∵AB=2,AC=3,∠A=60°,D為線段BC上一點,且2BD=CD,
∴由余弦定理可得:BC=$\sqrt{A{B}^{2}+A{C}^{2}-2AB•AC•cos∠A}$=$\sqrt{4+9-2×2×3×\frac{1}{2}}$=$\sqrt{7}$,
∴BD=$\frac{1}{3}$BC=$\frac{\sqrt{7}}{3}$,
∴由余弦定理可得:cos∠B=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}$=$\frac{4+7-9}{2×2×\sqrt{7}}$=$\frac{\sqrt{7}}{14}$,
∴在△ABD中,AD=$\sqrt{A{B}^{2}+B{D}^{2}-2AB•BD•cos∠B}$=$\sqrt{4+\frac{7}{9}-2×2×\frac{\sqrt{7}}{3}×\frac{\sqrt{7}}{14}}$=$\frac{\sqrt{37}}{3}$.
故答案為:$\frac{\sqrt{37}}{3}$.

點評 本題主要考查了余弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知p:函數(shù)g(x)=2x2-2(2m+1)x-6m(m-1)(x∈R)的圖象在(-1,5)上與x軸有唯一的公共點;q:函數(shù)f(x)=mx3-3(m+1)x2+(3m+6)x+1(m<0,-1≤x≤1)圖象上任意一點的切線斜率恒大于3m,如果p或q為真,p且q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=(3x+2)ex,f′(x)為f(x)的導函數(shù),則f′(0)的值為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為120°,且|${\overrightarrow a}$|=|${\overrightarrow b}$|=2,那么|${\overrightarrow a$-3$\overrightarrow b}$|=2$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.(1)解不等式:$\frac{9}{x+4}$≤2;
(2)已知不等式x2-2x+k2-1>0對一切實數(shù)x恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.對于數(shù)列{xn},若對任意n∈N*,都有$\frac{{x}_{n}+{x}_{n+2}}{2}$<xn+1成立,則稱數(shù)列{xn}為“減差數(shù)列”.設bn=2t-$\frac{tn-1}{{2}^{n-1}}$,若數(shù)列b3,b4,b5,…是“減差數(shù)列”,則實數(shù)t的取值范圍是( 。
A.(-1,+∞)B.(-∞,-1]C.(1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{-{2}^{x}+m}{{2}^{x+1}+n}$,(其中m、n為參數(shù)).
(1)當m=n=1時,證明:f(x)不是奇函數(shù);
(2)如果m=1,n=2,判斷f(x)的單調性并給予證明.
(3)在(2)的條件下,求不等式f(f(x))+f($\frac{1}{4}$)<0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.下列不等式中,①α∈(0,$\frac{π}{2}$)時,sin2α+$\frac{4}{{{{sin}^2}α}}$≥4;②log2(x2+1)≥1+log2x(x>0);③sinx+cosx≤$\sqrt{2}$;④22x+22y≥2x+y+1恒成立的有(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設命題p:“方程4x2+4(m-2)x+1=0無實根”,
命題q:“方程x2-mx+1=0有兩個不相等的正實數(shù)根”,若p∧q為假,?q為真,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案