12.一扇形的周長等于4cm,面積等于1cm2,則該扇形的半徑為1,圓心角為2.

分析 設(shè)該扇形圓心角為θ,半徑為r,由題意得$\frac{1}{2}$θr2=1,2r+θr=4,解方程求得θ 值.

解答 解:設(shè)該扇形圓心角為θ,半徑為r,
則由題意得$\frac{1}{2}$θr2=1,2r+θr=4,
∴$\frac{1}{2}$θr2=$\frac{1}{2}$r•θr=$\frac{1}{2}$r(4-2r)=1,
∴r=1,
∴θ=2 (rad),
故答案為:1,2.

點評 本題考查扇形的面積公式、弧長公式的應(yīng)用,求出 r值是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱柱ABCD-A1B1C1D1中,AB∥CD,AB⊥AD,AB=4,AD=2$\sqrt{2}$,CD=2,AA1=2,側(cè)棱AA1⊥底面ABCD,E是A1D上一點,且A1E=2ED.
(1)求證:EO∥平面A1ABB1;
(2)求直線A1B與平面A1ACC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.實數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-a≤0}\\{x-y≥0}\\{y≥0}\\{\;}\end{array}\right.$,若z=x-2y的最小值為-1,則實數(shù)a的值為( 。
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平面直角坐標(biāo)系中,“點M的坐標(biāo)滿足方程4$\sqrt{x}$+y=0”是“點M在曲線y2=16x上”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題正確的個數(shù)是( 。
(1)命題“若m>0,則方程x2+x-m=0有實根”的逆否命題為:“若方程x2+x-m=0無實根,則m≤0”
(2)對于命題p:“?x∈R,使得x2+x+1<0”,則?p:“?x∈R,均有x2+x+1≥0”
(3)“x≠1”是“x2-3x+2≠0”的充分不必要條件
(4)若p∧q為假命題,則p,q均為假命題.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.2016年高考報名體檢中,某市共有40000名男生參加體檢,體檢其中一項為測量身高,統(tǒng)計調(diào)查數(shù)據(jù)顯示所有男生的身高服從正態(tài)分布N(170,16).統(tǒng)計人員從市一中高三的參加體檢的男生中隨機抽取了50名進(jìn)行身高測量,所得數(shù)據(jù)全部介于162cm和186cm之間,并將測量數(shù)據(jù)分成6組:第一組[162,166),第二組[166,170),…,第六組[182,186),然后按上述分組方式繪制得到如圖所示的頻率分布直方圖.
(1)試評估市一中高三年級參加體檢的男生在全市高三年級參加體驗的男生中的平均身高狀況(同一組中的數(shù)據(jù)用該區(qū)間的中間值作代表);
(2)在這50名參加體檢的男生身高在178cm以上(含178cm)的人中任意抽取3人,將該3人中身高排名(從高到低)在全市參加體檢的高三男生身高前52名的人數(shù)記為X,求X的數(shù)學(xué)期望.
若X-N(μ,δ2),則P(μ-δ<X≤μ+δ)=0.6826,P(μ-2δ<X≤μ+2δ))=0.9544,P(μ-3δ<X≤μ+3δ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知$\overrightarrow{OA}$=(k,2),$\overrightarrow{OB}$=(1,2k),$\overrightarrow{OC}$=(1-k,-1)且相異的三點A、B、C共線,則實數(shù)k=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(cosβ,sinβ),且$\overrightarrow{a}$,$\overrightarrow$滿足關(guān)系|k$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow$|(k為正數(shù)).
(1)求$\overrightarrow{a}$與$\overrightarrow$的數(shù)量積用k表示的解析式f(k).
(2)$\overrightarrow{a}$能否與$\overrightarrow$垂直?$\overrightarrow{a}$能否與$\overrightarrow$平行?若不能,說明理由;若能,求出相應(yīng)的k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}為等差數(shù)列,a4=9,d=-2,則S4=48.

查看答案和解析>>

同步練習(xí)冊答案