【題目】已知橢圓的中心在坐標原點,一個焦點坐標是,離心率為.

(1)求橢圓的標準方程;

(2)過作直線交橢圓于兩點, 是橢圓的另一個焦點,求的取值范圍.

【答案】12

【解析】試題分析:1)由焦點求得c=1,再由離心率公式,求得a,再由a,bc的關系,求得b,進而得到橢圓方程;
2)設直線AB的方程為:y=kx-1,聯(lián)立橢圓方程,消去y,得到x的方程,運用韋達定理,求出|x1-x2|的表達式,運用換元法,利用單調性求范圍,再由面積公式,即可得到面積所求范圍.

試題解析:

1)由條件可設橢圓方程為,則有, ,

,

所以所求橢圓方程是.

2)由條件設直線的方程為,代入橢圓方程得

, ,

,

, ,

,,

,

,

, ,上單調增

,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱錐C1B1CD1后得到的幾何體如圖所示.四邊形ABCD為正方形,OACBD的交點,EAD的中點,A1E⊥平面ABCD.

(1)證明:A1O∥平面B1CD1

(2)設MOD的中點,證明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)當時,求在點的切線方程;

(2)若對, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)確定函數(shù)在定義域上的單調性,并寫出詳細過程;

(2)若上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,側面為正三角形,且平面 平面, 中點, .

(Ⅰ)求證:平面平面;

(Ⅱ)若二面角的平面角大小滿足,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,一個焦點坐標是,離心率為.

(1)求橢圓的標準方程;

(2)過作直線交橢圓于兩點, 是橢圓的另一個焦點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),記.

(1)求證: 在區(qū)間內有且僅有一個實數(shù);

(2)用表示中的最小值,設函數(shù),若方程在區(qū)間內有兩個不相等的實根,記內的實根為.求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為常數(shù),設為自然對數(shù)的底數(shù).

(1)當時,求的最大值;

(2)若在區(qū)間上的最大值為,求的值;

(3)設,若,對于任意的兩個正實數(shù),證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求曲線在點處的切線方程;

(2)令,討論的單調性并判斷有無極值,若有,求出極值.

查看答案和解析>>

同步練習冊答案