20.若向量$\overrightarrow{a}$,$\overrightarrow$滿足:($\overrightarrow{a}$-$\overrightarrow$)•(2$\overrightarrow{a}$+$\overrightarrow$)=-4,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.30°B.60°C.120°D.150°

分析 由條件進(jìn)行向量數(shù)量積的運算即可求出cos$<\overrightarrow{a},\overrightarrow>$的值,從而得出$\overrightarrow{a}$與$\overrightarrow$的夾角.

解答 解:根據(jù)條件:
$(\overrightarrow{a}-\overrightarrow)•(2\overrightarrow{a}+\overrightarrow)=2{\overrightarrow{a}}^{2}-\overrightarrow{a}•\overrightarrow-{\overrightarrow}^{2}$
=$8-8cos<\overrightarrow{a},\overrightarrow>-16$
=-4;
∴$cos<\overrightarrow{a},\overrightarrow>=-\frac{1}{2}$;
∴$\overrightarrow{a},\overrightarrow$的夾角為120°.
故選:C.

點評 考查向量數(shù)量積的運算及計算公式,向量夾角的范圍,已知三角函數(shù)值求角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=4cosωxsin(ωx+$\frac{2π}{3}$)-$\sqrt{3}$的最小正周期為π.
(1)求f(x)在[-π,π]上的單調(diào)增區(qū)間;
(2)若存在x∈[0,$\frac{π}{6}$],使f(x-$\frac{π}{4}$)>|m-2|成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知x,y∈R,且x>y>0,則下式一定成立的是(  )
A.$\frac{1}{x-y}$-$\frac{1}{y}$>0B.2x-3y>0C.($\frac{1}{2}$)x-($\frac{1}{2}$)y-x<0D.lnx+lny>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=2014asinx+2015bx3+2016,記f(x)的導(dǎo)函數(shù)為f′(x),則f(2015)+f(-2015)+f′(2016)-f′(-2016)=( 。
A.4030B.4028C.4032D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.化簡lg52+lg2lg50+lg22=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知直線x=t與函數(shù)f(x)=lnx和g(x)=a+ax-x2的圖象分別交于M、N兩點,O為坐標(biāo)原點,當(dāng)直線OM、ON的斜率之差kOM-kON在區(qū)間t∈[1,+∞)上單調(diào)遞增時,實數(shù)a的取值范圍為( 。
A.[-2,+∞)B.(-∞,-2]C.(-2,+∞)D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知冪函數(shù)f(x)=xn,n∈{-2,-1,1,3}的圖象關(guān)于y軸對稱,則下列選項正確的是( 。
A.f(-2)>f(1)B.f(-2)<f(1)C.f(2)=f(1)D.f(-2)>f(-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)解不等式:$\frac{3x-1}{2-x}≥1$;
(2)若3<a<8,1<b<9,求2a-b和$\frac{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.等比數(shù)列{an}的各項均為正數(shù),且a3a8+a4a7=18.則log3a1+log3a2+…+log3a10=( 。
A.12B.10C.8D.2+log35

查看答案和解析>>

同步練習(xí)冊答案